[1]梁 杰,胡城君,杨 炯,等.基于光滑整形器的水电定子测量臂残余振动抑制[J].郑州大学学报(工学版),2025,46(06):112-117.[doi:10.13705/j.issn.1671-6833.2025.06.003]
 LIANG Jie,HU Chengjun,YANG Jiong,et al.Residual Vibration Suppression of Hydropower Stator Measurement Arm Based on Smooth Shaper[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):112-117.[doi:10.13705/j.issn.1671-6833.2025.06.003]
点击复制

基于光滑整形器的水电定子测量臂残余振动抑制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
112-117
栏目:
出版日期:
2025-10-22

文章信息/Info

Title:
Residual Vibration Suppression of Hydropower Stator Measurement Arm Based on Smooth Shaper
文章编号:
1671-6833(2025)06-0112-06
作者:
梁 杰 胡城君 杨 炯 高 琳
郑州大学 机械与动力工程学院,河南 郑州 450001
Author(s):
LIANG Jie HU Chengjun YANG Jiong GAO Lin
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
输入整形 残余振动抑制 光滑整形器 大型测量臂
Keywords:
input shaping residual vibration suppression smooth shaper large measuring arm
分类号:
TN249TH113.1
DOI:
10.13705/j.issn.1671-6833.2025.06.003
文献标志码:
A
摘要:
水轮发电机定子圆度的测量主要依靠人工推动测量臂至多个待测点完成评价,该过程费时费力。为进一步提高测量效率,设计了一套定子圆度测量系统,用光滑整形器(SIS)对测量臂停止阶段的残余振动进行抑制。首先,利用仿真对SIS整形器和已有的零振动整形器(ZV)、零振动一阶微分整形器(ZVD)和极不敏感整形器(EI)在残余振动、时滞和灵敏度3个方面进行对比;其次,通过实验测试平台对上述整形器的效果进行测试;最后,在青海羊曲水电站进行了现场测试。结果表明:SIS鲁棒性最好,在系统参数不够精确时,对其抑振效果的影响最小;当系统阻尼比和固有频率不够准确时,SIS整形器仍能实现较好的抑振效果,对测量臂末端残余振动峰值抑制率为91.6%;具备SIS整形器的定子圆度测量系统在保证精度的同时,将定子圆度测量时的振动衰减时间减少了87.9%。
Abstract:
The measurement of stator roundness in hydro-generators traditionally relied on manually pushing the measurement arm to multiple test points for evaluation. This process was time-consuming and labor-intensive. To improve measurement efficiency, a stator roundness measurement system was designed, utilizing a smooth input shaper (SIS) to suppress residual vibrations during the stopping phase of the measurement arm. Firstly, simulations were performed to compare the SIS shaper with existing zero-vibration (ZV), zero-vibration-derivative (ZVD), and extra-insensitive (EI) shapers in terms of residual vibration, time delay, and sensitivity. Secondly, an experimental test platform was used to evaluate the effectiveness of these shapers. Finally, field tests were conducted at the Yangqu Hydropower Station in Qinghai Province. Results demonstrated that the SIS exhibited the strongest robustness, with minimal impact on vibration suppression performance when system parameters were imprecise. Even with inaccuracies in damping ratio and natural frequency, the SIS achieved effective vibration suppression, reducing the peak residual vibration at the measurement arm tip by 91.6%. The SIS-integrated measurement system maintained measurement accuracy while reducing vibration decay time by 87.9% during stator roundness assessments.

参考文献/References:

[1]李欣业, 高赫远, 郭晓强, 等. 钻柱振动的主被动控制研究进展与展望[J]. 天然气工业, 2024, 44(6): 98-110. 

LI X Y, GAO H Y, GUO X Q, et al. Research progress and prospect in active and passive control of drill string vibration[J]. Natural Gas Industry, 2024, 44(6): 98110. 
[2]李小彭, 尚东阳, 陈仁桢, 等. 基于机械臂位姿变换的柔性负载伺服驱动系统控制策略[J]. 机械工程学报, 2020, 56(21): 56-69. 
LI X P, SHANG D Y, CHEN R Z, et al. Control strategy of flexible load servo drive system based on manipulator position and position transformation[J]. Journal of Mechanical Engineering, 2020, 56(21): 56-69. 
[3]郑继周, 韩翔, 郭浩然, 等. 基于颗粒阻尼器的悬臂结构减振试验研究[J]. 农机化研究, 2022, 44(3): 137-141. 
ZHENG J Z, HAN X, GUO H R, et al. Experimental study on vibration reduction of cantilever structure based on particle damper[J]. Journal of Agricultural Mechanization Research, 2022, 44(3): 137-141. 
[4]康建云, 毕果, 苏史博. 压电柔性机械臂系统辨识与振动主动控制[J]. 振动、测试与诊断, 2021, 41(1): 90-95, 202. 
KANG J Y, BI G, SU S B. Experimental identification and active vibration control of piezoelectric flexible manipulator[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(1): 90-95, 202. 
[5]文茜茜, 张弘毅, 陈政清, 等. 基于塔内位移观测器和均衡空间低维控制器的高塔结构振动主动控制系统[J]. 振动工程学报, 2024, 37(7): 1126-1138. 
WEN X X, ZHANG H Y, CHEN Z Q, et al. Active control system of high tower based on displacement observer inside tower and low-dimension controller in equilibrium space[J]. Journal of Vibration Engineering, 2024, 37 (7): 1126-1138. 
[6]BERTA Š, GOGA V, ŠARKÁN L, et al. Active vibration damping of aluminum beam using piezoelectric actuator[C]∥Applied Physics of Condensed Matter (Apcom 2022). Štrbsk Pleso: AIP Publishing, 2023: 2778-2787. 
[7]HUANG Z C, HUANG F, WANG X G, et al. Active vibration control of composite cantilever beams[J]. Materials, 2022, 16(1): 95. 
[8]DÍAZ A, BELLO-ROBLES J C, FUENTES-AGUILAR R Q, et al. Control system for vibration attenuation in a flexible beam[C]∥2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Piscataway: IEEE, 2023: 1-6. 
[9]刘德馨, 张建成, 李媛, 等. 采摘机械臂自适应输入整形控制研究[J]. 控制理论与应用, 2022, 39(6): 1043-1050. 
LIU D X, ZHANG J C, LI Y, et al. Research on adaptive input shaping control of fruits and vegetable harvesting robot arm[J]. Control Theory & Applications, 2022, 39(6): 1043-1050. 
[10]刘卓清, 孙宁, 吴易鸣, 等. 考虑状态约束的五自由度塔式吊车多目标最优轨迹规划[J]. 中国科学: 信息科学, 2022, 52(3): 521-538. 
LIU Z Q, SUN N, WU Y M, et al. Multi-objective trajectory planning for 5-DOF underactuated tower cranes with state constraints[J]. Scientia Sinica (Informationis), 2022, 52(3): 521-538. 
[11]卢宁, 宋鹏程. 基于自适应S速度轨迹的塔式起重机变幅定位与防摆控制研究[J]. 机电工程, 2022, 39 (1): 120-127. 
LU N, SONG P C. Variable amplitude positioning and anti-swing control of tower crane based on adaptive S speed locus[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(1): 120-127. 
[12] GUO Z F, ZHANG J Q, ZHANG P S. Research on the residual vibration suppression of delta robots based on the dual-modal input shaping method[J]. Actuators, 2023, 12(2): 84. 
[13] SUN X J, YE H, FEI S M. A closed-loop detection and open-loop control strategy for booms of truck-mounted concrete pump[J]. Automation in Construction, 2013, 31: 265-273. 
[14] LEE S, PARK S, LEE W, et al. Input shaping algorithm using the s curve velocity command for gantry stage[C]∥ 2010 5th IEEE Conference on Industrial Electronics and Applications. Piscataway: IEEE, 2010: 656-661. 
[15] BAUMGART M D, PAO L Y. Cooperative multi-input shaping for arbitrary inputs[C]∥Proceedings of the 2001 American Control Conference. Piscataway: IEEE, 2001: 275-280. 
[16] FASIH S M, MOHAMED Z, HUSAIN A R, et al. Payload swing control of a tower crane using a neural network-based input shaper[J]. Measurement and Control, 2020, 53(7/8): 1171-1182. 
[17]刘灿. 基于自适应鲁棒控制方法的塔式起重机定位防摆相关研究[D]. 济南: 山东建筑大学, 2024. 
LIU C. Research related to positioning and anti-swing of tower cranes based on adaptive robust control methods [D]. Jinan: Shandong Jianzhu University, 2024. 
[18]马瑞. 基于输入整形技术的桥式起重机吊具防摆控制研究[D]. 兰州: 兰州理工大学, 2024. 
MA R. Research on anti-swing control of overhead crane spreader based on input shaping technology [D]. Lanzhou: Lanzhou University of Technology, 2024. 
[19] BOSCARIOL P, RICHIEDEI D, TAMELLIN I. Residual vibration suppression in uncertain systems: a robust structural modification approach to trajectory planning[J]. Robotics and Computer-Integrated Manufacturing, 2022, 74: 102282. 
[20]梁杰, 孙震伟. 基于线激光的压缩机曲轴圆度和平面度测量[J]. 郑州大学学报(工学版), 2024, 45(4): 133-139. 
LIANG J, SUN Z W. Line laser based roundness and flatness measurement of compressor crankshaft[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(4): 133-139.

更新日期/Last Update: 2025-10-21