[1]孙钢灿,赵心睿,郝万明,等.IRS辅助无线感知系统的安全性能优化[J].郑州大学学报(工学版),2025,46(06):1-7.[doi:10.13705/j.issn.1671-6833.2025.06.004]
 SUN Gangcan,ZHAO Xinrui,HAO Wanming,et al.Security Performance Optimization of IRS-assisted Wireless Sensing Systems[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):1-7.[doi:10.13705/j.issn.1671-6833.2025.06.004]
点击复制

IRS辅助无线感知系统的安全性能优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
1-7
栏目:
出版日期:
2025-10-22

文章信息/Info

Title:
Security Performance Optimization of IRS-assisted Wireless Sensing Systems
文章编号:
1671-6833(2025)06-0001-07
作者:
孙钢灿12 赵心睿1 郝万明2 彭淑敏2
1.郑州大学 河南先进技术研究院,河南 郑州 450001;2.郑州大学 电气与信息工程学院,河南 郑州 450001
Author(s):
SUN Gangcan12 ZHAO Xinrui1 HAO Wanming2 PENG Shumin2
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China; 2.School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
智能反射面 雷达感知 感知安全 到达角估计 反射优化
Keywords:
intelligent reflecting surface radar sensing sensing security angle-of-arrival estimation reflection optimization
分类号:
TN957.51V279TP18
DOI:
10.13705/j.issn.1671-6833.2025.06.004
文献标志码:
A
摘要:
为解决多雷达场景下非法雷达(URS)窃取目标信息的感知安全问题,提出了一种基于智能反射表面(IRS)辅助的安全无线感知系统模型。该系统将具有感知功能的IRS安装于目标上,并采用两阶段感知方案。第1阶段:通过IRS感知单元估计所有雷达的角度信息;第2阶段:根据估计结果设计IRS反射系数以最大程度降低URS感知概率。具体地,在保证合法雷达(LRS)信噪比约束以及IRS反射相移模约束条件下,构建了一个最小化最大URS信噪比的优化问题,并提出了一种基于Dinkelbach和半正定松弛(SDR)技术的迭代优化算法。仿真结果表明:相比未安装IRS方案,LRS信噪比提升约3 dB,URS信噪比降低约12 dB,所提方案显著提升了系统安全性能。
Abstract:
To address the sensing security issue of unauthorized radar station (URS) stealing target information in multi-radar scenarios, a secure wireless sensing system model based on intelligent reflecting surface (IRS) assistance was proposed. This system deployed an IRS with sensing capabilities on the target and adopted a two-phase sensing scheme. In the first phase, the IRS sensing unit estimated the angle information of all radars. In the second phase, the IRS reflection coefficients were designed based on the estimation results to minimize the perception probability of URS. Specifically, under the constraints of ensuring the signal-to-noise ratio of the legitimate radar station (LRS) and the IRS reflection phase shift modulus, an optimization problem was formulated to minimize the maximum signal-to-noise ratio of the URS. An iterative optimization algorithm based on the Dinkelbach method and semidefinite relaxation (SDR) technique was proposed. Simulation results showed that compared to the scheme without IRS, the signal-to-noise ratio of the LRS improved by approximately 3 dB, while the signal-to-noise ratio of the URS decreased by about 12 dB, demonstrating that the proposed scheme significantly enhanced system security performance.

参考文献/References:

[1]PATTANAIK B, CHAUHAN A. A study of stealth technology[J]. Materials Today: Proceedings, 2023, 81: 543-546. 

[2]AHMAD H, TARIQ A, SHEHZAD A, et al. Stealth technology: methods and composite materials: a review [J]. Polymer Composites, 2019, 40(12): 4457-4472. 
[3]KHAN T A, LI J X, CHEN J, et al. Design of a low scattering metasurface for stealth applications[J]. Materials, 2019, 12(18): 3031. 
[4]WANG W, LIU D Q, CHENG H F, et al. Structural design and broadband radar absorbing performance of multilayer patch using carbon black[J]. Advanced Composites and Hybrid Materials, 2022, 5(4): 3137-3145. 
[5]郭歆莹, 刘龙飞, 朱春华. RIS辅助无人机通信系统波束赋形双重循环优化算法[J]. 郑州大学学报(工学版), 2025, 46(2): 67-74. 
GUO X Y, LIU L F, ZHU C H. Beamforming dual-loop optimization algorithm for RIS-assisted UAV communication systems[J]. Journal of Zhengzhou University (Engineering Science), 2025, 46(2): 67-74. 
[6]WANG F Z, LI H B, FANG J. Joint active and passive beamforming for IRS-assisted radar[J]. IEEE Signal Processing Letters, 2021, 29: 349-353. 
[7]MA T, XIAO Y, LEI X, et al. Distributed reconfigurable intelligent surfaces assisted indoor positioning[J]. IEEE Transactions on Wireless Communications, 2023, 22 (1): 47-58. 
[8]SHAO X D, YOU C S, MA W Y, et al. Target sensing with intelligent reflecting surface: architecture and performance[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2070-2084. 
[9]WANG P L, MEI W D, FANG J, et al. Target-mounted intelligent reflecting surface for joint location and orientation estimation[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(12): 3768-3782. 
[10] XIONG X, ZHENG B X, SWINDLEHURST A L, et al. A new intelligent reflecting surface-aided electromagnetic stealth strategy[J]. IEEE Wireless Communications Letters, 2024, 13(5): 1498-1502. 
[11] ZHENG B X, XIONG X, TANG J, et al. Intelligent reflecting surface-aided electromagnetic stealth against radar detection[J]. IEEE Transactions on Signal Processing, 2024, 72: 3438-3452. 
[12] LI K, JIU B, WANG P H, et al. Radar active antagonism through deep reinforcement learning: a way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186: 108130. 
[13] BAI L H, JIU B, LI K, et al. Importance differentiation based coordinated anti-jamming strategy optimization for frequency agile radar[C]∥2023 IEEE International Radar Conference (RADAR). Piscataway: IEEE, 2023: 1-5. 
[14] SHAO X D, ZHANG R. Target-mounted intelligent reflecting surface for secure wireless sensing[J]. IEEE Transactions on Wireless Communications, 2024, 23 (8): 9745-9758. 
[15]WU Q Q, ZHANG S W, ZHENG B X, et al. Intelligent reflecting surface-aided wireless communications: a tutorial[J]. IEEE Transactions on Communications, 2021, 69 (5): 3313-3351. 
[16] CHEN H F, CHEN W J, WANG Y, et al. A low computational cost lightning mapping algorithm with a nonuniform L-shaped array: principle and verification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4106410.
[17] CAI J J, ZHANG H Y, LIU W, et al. A derivative-based music algorithm for two-dimensional angle estimation employing an L-shaped array [EB/OL].(2021-04-22)[2025-02-15]. https:∥ieeexplore.ieee.org/document/9408790. 
[18] LU W D, DING Y, FENG Y Q, et al. Dinkelbachguided deep reinforcement learning for secure communication in UAV-aided MEC networks [EB/OL].(2023-0111)[2025-02-15]. https:∥ieeexplore. ieee. org/document/10001574. 
[19] SHEN K M, YU W. Fractional programming for communication systems: part I: power control and beamforming [J]. IEEE Transactions on Signal Processing, 2018, 66 (10): 2616-2630. 
[20] CROUZEIX J P, FERLAND J A. Algorithms for generalized fractional programming[J]. Mathematical Programming, 1991, 52(1): 191-207.

更新日期/Last Update: 2025-10-21