[1]MEGAHED F M, CHEN Y J, MEGAHED A, et al. The class imbalance problem[J]. Nature Methods, 2021,18 (11): 1270-1272. [2]田鸿朋,张震,张思源,等.复合可靠性分析下的不平衡数据证据分类[J].郑州大学学报(工学版),2023, 44(4):22-28.
TIAN H P,ZHANG Z,ZHANG S Y,et al. Imbala-nced data evidential classification with composite reliability [J].Journal of Zhengzhou University (Engine-ering Science),2023,44(4):22-28.
[3]THABTAH F, HAMMOUD S, KAMALOV F, et al. Data imbalance in classification: experimental evaluation[J]. Information Sciences, 2020, 513: 429-441.
[4]CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[5]HE H B, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced le-arning[C]∥2008 IEEE International Joint Conference onNeural Networks. Piscataway: IEEE, 2008: 1322-1328.
[6]MOREO A, ESULI A, SEBASTIANI F. Distributional random oversampling for imbalanced text classification [C]∥Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Informat-ion Retrieval. New York: ACM, 2016: 805-808.
[7]王曦, 温柳英, 闵帆. 融合矩阵分解和代价敏感的微生物数据扩增算法[J]. 数据采集与处理, 2023, 38 (2): 401-412.
WANG X, WEN L Y, MIN F. Fusing matrix factorization and cost-sensitive microbial data augmentation algorithm[J]. Journal of Data Acquisition and Processing, 2023, 38(2): 401-412.
[8]温柳英, 吴俊, 闵帆. 融合矩阵分解和空间划分的微生物数据扩增方法[J]. 山东大学学报(理学版), 2025, 60(1): 14-28,44.
WEN L Y, WU J, MIN F. Fusing matrix factorization and space partition microbial data augmentation algorithm [J]. Journal of Shandong University (Natural Science), 2025, 60(1): 14-28, 44.
[9]LI Y, HUANG C, DING L Z, et al. Deep learning in bioinformatics: introduction, application, and perspective in the big data era[J]. Methods, 2019, 166: 4-21.
[10] LI Y X, CHAI Y, YIN H P, et al. A novel feature learning framework for high-dimensional data classification [J]. International Journal of Machine Learning and Cybernetics, 2021, 12(2): 555-569.
[11]WEN L Y, ZHANG X M, LI Q F, et al. KGA: integrating KPCA and GAN for microbial data augmentation [J]. International Journal of Machine Learning and Cybernetics, 2023, 14(4): 1427-1444.
[12] FENG W, HUANG W J, REN J C. Class imbalance ensemble learning based on the margin theory[J]. Applied Sciences, 2018, 8(5): 815.
[13] ABDI H, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
[14] AHMED M, SERAJ R, ISLAM S M S. The k-means algorithm: a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
[15] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]∥Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104.
[16] HE X, ZHAO K Y, CHU X W. AutoML: a survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021, 212: 106622.
[17] DOUZAS G, BACAO F, LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences, 2018, 465: 1-20.
[18] DENG D S. DBSCAN clustering algorithm based on density[C]∥2020 7th International Forum on Electrical Engineering and Automation (IFEEA). Piscataway: IEEE, 2020: 949-953.
[19] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure[C]∥Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1999: 49-60.
[20] SCHILT K. The importance of being Agnes[J]. Symbolic Interaction, 2016, 39(2): 287-294.