[1]李爱民,郭振强,兀泽坤,等.基于 GRACE 的京津冀地区地下水干旱时空变化特征[J].郑州大学学报(工学版),2026,47(XX):1-9.[doi:10. 13705 / j. issn. 1671-6833. 2025. 05. 019]
 LI Aimin,GUO Zhenqiang,WU Zekun,et al.Spatio-Temporal Variation Characteristics of Groundwater Drought in the Beijing-Tianjin-Hebei Region Based on GRACE Data[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-9.[doi:10. 13705 / j. issn. 1671-6833. 2025. 05. 019]
点击复制

基于 GRACE 的京津冀地区地下水干旱时空变化特征()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-9
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Spatio-Temporal Variation Characteristics of Groundwater Drought in the Beijing-Tianjin-Hebei Region Based on GRACE Data
作者:
李爱民1郭振强1兀泽坤2成子怡1
1. 郑州大学 地球科学与技术学院,河南 郑州 450001;2. 天地 (常州)自动化股份有限公司,江苏 常州 213000
Author(s):
LI Aimin1 GUO Zhenqiang 1 WU Zekun 2 CHENG Ziyi1
1. School of Geo-science and Technology, Zhengzhou University, Zhengzhou 450001, China; 2. TianDi ( Changzhou) Automation Co. , Ltd. , Changzhou 213015, China
关键词:
GRACE重力卫星京津冀地区地下水干旱地下水储量游程理论
Keywords:
grace gravity satellite Beijing-Tianjin-Hebei region groundwater drought groundwater storage capacity run theory
分类号:
TV213. 4P641
DOI:
10. 13705 / j. issn. 1671-6833. 2025. 05. 019
文献标志码:
A
摘要:
针对京津冀地区因长期地下水超采、水资源供需失衡等因素引发的地下水资源短缺与干旱频发问题,探究了该地区地下水干旱的时空演变特征及其影响机制,旨在为该区域水资源的可持续管理提供科学支撑,助力京津冀地区实现高质量发展。采用2003年10月—2023年9月期间的重力恢复与气候实验卫星(GRACE)数据和全球陆面数据同化系统(GLDAS)数据,反演了京津冀地区的地下水储量变化(GWSA),基于此构建了地下水干旱指数(GRACE-GDI),后续结合游程理论识别了研究区的地下水干旱事件,并分析了地下水干旱的发生频率以及时空特征,最后,结合气象数据以及水资源公报等数据,进一步探讨了地下水干旱与各影响因素间的关系。研究结果表明:①京津冀地区中部偏东区域的地下水干旱发生频率较高,东南沿线区域中度及以上程度的地下水干旱发生频率最高;②该地区地下水干旱事件集中发生在2014年至2021年的8年间,呈现频次高、影响范围广但干旱强度相对较小的特征;③从季节性空间分布来看,东南沿线城市的秋季和春季干旱情况较为严重,夏季相对较轻,这一分布特征与3至5月份和10、11月份的农业灌溉活动有关;④从年际空间分布来看,自2014年降水量急剧减少后,地下水干旱情况逐渐加重,至2020年达到最严重程度,全区域出现大面积中度以上地下水干旱现象,2021年随着降水量大幅增加,地下水干旱情况有所缓解;⑤南水北调工程有效补给了京津冀地区的地表水储量,并促进了供水和用水模式的转变,在缓解地下水长期亏损中发挥了重要作用。
Abstract:
This study investigated the spatiotemporal characteristics and influencing mechanisms of groundwater drought in the Beijing-Tianjin-Hebei region, aiming to provide scientific support for sustainable water resource management and promote high-quality regional development. Using Gravity Recovery and Climate Experiment (GRACE) satellite data (October 2003 to September 2023) and Global Land Data Assimilation System (GLDAS) data, groundwater storage anomalies (GWSA) were retrieved for the study area. Based on these results, a groundwater drought index (GRACE-GDI) was constructed, through which groundwater drought events were identified using run theory. The occurrence frequency and spatiotemporal patterns of groundwater drought were subsequently analyzed, followed by an examination of relationships between groundwater drought and various influencing factors using meteorological data and water resource bulletins. The results indicated that: ①Higher frequencies of groundwater drought occurred in the central-eastern region, with the highest frequencies of moderate-to-severe drought concentrated along the southeastern periphery; ②Groundwater drought events primarily clustered between 2014 and 2021, characterized by high frequency, wide spatial extent, but relatively low intensity; ③Seasonally, autumn and spring droughts were most severe in southeastern cities, while summer droughts were milder, correlating with agricultural irrigation activities during March to May and October to November; ④Interannually, groundwater drought intensified after 2014 following sharp precipitation declines, reaching maximum severity in 2020 when widespread moderate-to-severe drought covered the entire region, before alleviating in 2021 due to increased precipitation; ⑤The South-to-North Water Diversion Project effectively replenished surface water resources and facilitated shifts in water supply-demand patterns, playing a crucial role in mitigating long-term groundwater deficits.

参考文献/References:

[1] VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
[2] 粟晓玲, 褚江东, 张特, 等. 西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J]. 水资源保护, 2022, 38(1): 34-42.
SU X L, CHU J D, ZHANG T, et al. Spatio-temporal evolution trend of groundwater drought and its dynamic response to meteorological drought in Northwest China[J]. Water Resources Protection, 2022, 38(1): 34-42.
[3] 黄润泽, 武蓉, 张三策, 等. 黄河流域中游地下水干旱演变规律及其对植被变化的响应[J]. 灌溉排水学报, 2024, 43(5): 105-112.
HUANG R Z, WU R, ZHANG S C, et al. Change in groundwater drought and its consequence for vegetation in the Middle Reaches of the Yellow River Basin[J]. Journal of Irrigation and Drainage, 2024, 43(5): 105-112.
[4] ZHOU Z G, LU B H, JIANG Z F, et al. Quantifying water storage changes and groundwater drought in the Huaihe River Basin of China based on GRACE data[J]. Sustainability, 2024, 16(19): 8437.
[5] TOUATI F, BENARABA N, BENAYHIA S. Grace-based observations for near real-time assessment of groundwater drought severity index[C]//2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS). Piscataway: IEEE, 2024: 396-400.
[6] NIGATU Z M, YOU W, MELESSE A M. Drought dynamics in the Nile River Basin: meteorological, agricultural, and groundwater drought propagation[J]. Remote Sensing, 2024, 16(5): 919.
[7] KARUNAKALAGE A, LEE J Y, DAQIQ M T, et al. Characterization of groundwater drought and understanding of climatic impact on groundwater resources in Korea[J]. Journal of Hydrology, 2024, 634: 131014.
[8] ZHONG Y L, FENG W, HUMPHREY V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11(24): 3050.
[9] ZHU Q, ZHANG H. Groundwater drought characteristics and its influencing factors with corresponding quantitative contribution over the two largest catchments in China[J]. Journal of Hydrology, 2022, 609: 127759.
[10] 苏万磊. 基于Mann-Kendall的秦皇岛市降水多时间尺度分析[J]. 水利科技与经济, 2020, 26(11): 23-26.
SU W L. Multi-time scale analysis of precipitation in Qinhuangdao city based on Mann-Kendall method[J]. Water Conservancy Science and Technology and Economy, 2020, 26(11): 23-26.
[11] 河北省水利厅. 2020年河北省水资源公报[M]. 石家庄: 河北省水利厅, 2021.
Department of Water Resources of Hebei Province. Water Resources Bulletin of Hebei Province 2020[M]. Shijiazhuang: Department of Water Resources of Hebei Province, 2021.
[12] 白鹏, 蔡常鑫. 1982—2019年中国陆地蒸散发变化的归因分析[J]. 地理学报, 2023, 78(11): 2750-2762.
BAI P, CAI C X. Attribution analysis of changes in terrestrial evapotranspiration in China during 1982—2019[J]. Acta Geographica Sinica, 2023, 78(11): 2750-2762.
[13] 莫兴国, 刘苏峡, 林忠辉, 等. 华北平原蒸散和GPP格局及其对气候波动的响应[J]. 地理学报, 2011, 66(5): 589-598.
MO X G, LIU S X, LIN Z H, et al. Patterns of evapotranspiration and GPP and their responses to climate variations over the North China Plain[J]. Acta Geographica Sinica, 2011, 66(5): 589-598.
[14] 李建明. 海河流域250米分辨率地表蒸散发遥感估算与应用研究[D]. 石家庄: 河北师范大学, 2021.
LI J M. Remote sensing estimation and application of surface evapotranspiration with 250 m resolution in Haihe River basin[D]. Shijiazhuang: Hebei Normal University, 2021.
[15] 赵钊. 华北平原作物需水量空间分布特征及影响机制研究[D]. 郑州: 华北水利水电大学, 2021.
ZHAO Z. Study on the spatial distribution characteristics and influence mechanism of crop water requirement in North China Plain[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
[16] 国家防汛抗旱总指挥部, 中华人民共和国水利部编. 中国水旱灾害公报-2014[M]. 北京: 中国水利水电出版社, 2015.
China’s State Flood Control and Drought Relief Headquarters. Compiled by the Ministry of Water Resources of the People’s Republic of China. China Water and Drought Disaster Bulletin - 2014[M]. Beijing: China Water & Power Press, 2015.
[17] 国家防汛抗旱总指挥部办公室, 中国水利水电科学研究院, 水利部水情教育中心(中国水利报社). 山洪防御早知道[M]. 北京: 中国水利水电出版社, 2017.
Office of State Flood Control and Drought Relief Headquarters, China Institute of Water Resources and Hydropower Research, Water Resources Department Water Situation Education Center (China Water Resources News). Early Knowledge of Mountain Torrent Disaster Defense[M]. Beijing: China Water & Power Press, 2017.
[18] 国家防汛抗旱总指挥部办公室, 中国水利水电科学研究院, 水利部水情教育中心(中国水利报社). 山洪防御早知道[M]. 北京: 中国水利水电出版社, 2022.
Office of State Flood Control and Drought Relief Headquarters, China Institute of Water Resources and Hydropower Research, Water Resources Department Water Situation Education Center (China Water Resources News). Early Knowledge of Mountain Torrent Disaster Defense[M]. Beijing: China Water & Power Press, 2022.
[19] 韩云环, 马柱国, 李明星. 近20年京津冀陆地水储量变化特征及其影响因子分析[J]. 气候与环境研究, 2024, 29(5): 519-533.
HAN Y H, MA Z G, LI M X. Change characteristics and influencing factors of terrestrial water storage in the Beijing-Tianjin-Hebei Region in the past 20 years[J]. Climatic and Environmental Research, 2024, 29(5): 519-533.

备注/Memo

备注/Memo:
收稿日期:2025-04-12;修订日期:2025-06-19
基金项目:河南省自然科学基金资助项目(242300421372) ;河南省科技攻关项目(232102320123)
作者简介:李爱民(1972— ) ,男,山东菏泽人,郑州大学副教授,博士,主要从事遥感与地理信息科学方面的研究,E-mail:aiminli@zzu.edu.cn。
更新日期/Last Update: 2026-01-14