[1]窦明,史玉仙,屈凌波,等.基于Landsat影像的大型水体水下地形分区反演[J].郑州大学学报(工学版),2026,47(XX):1-8.[doi:10. 13705 / j. issn. 1671-6833. 2025. 05. 020]
 DOU Ming,SHI Yuxian,QU Lingbo,et al.Zonal Inversion of Underwater Topography of Large Water Bodies Based on Landsat Images[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-8.[doi:10. 13705 / j. issn. 1671-6833. 2025. 05. 020]
点击复制

基于Landsat影像的大型水体水下地形分区反演()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-8
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Zonal Inversion of Underwater Topography of Large Water Bodies Based on Landsat Images
作者:
窦明12 史玉仙1 屈凌波2 王继华3 邢澳琪2
1. 郑州大学 水利与交通学院,河南 郑州 450001;2. 郑州大学 生态与环境学院,河南 郑州 450001;3.河南省自然资源监测和国土整治院,河南 郑州 450016
Author(s):
DOU Ming12 SHI Yuxian1 QU Lingbo2 WANG Jihua3 XING Aoqi2
1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China ; 2. School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; 3. Henan Provincial Natural Resources Monitoring and land Improvement Institute, Zhengzhou 450000, China
关键词:
水下地形反演 Landsat 遥感影像 BP 神经网络模型 多波段随机森林模型 丹江口水库
Keywords:
underwater topography inversion Landsat remote sensing imagery BP neural network model multiband random forest model Danjiangkou Reservoir
分类号:
P237TP79
DOI:
10. 13705 / j. issn. 1671-6833. 2025. 05. 020
文献标志码:
A
摘要:
针对缺资料大型水体水下地形获取困难的问题,以丹江口水库为研究对象,提出了一种基于Landsat遥感影像和水深分区的大型水体水下地形反演方法,分别采用水位线克里金插值法和四种水深反演模型(单波段、双波段比值、BP神经网络、多波段随机森林)对丹江口水库浅水区和深水区水下地形进行反演,并评价其反演精度。结果显示,浅水区水下地形反演效果良好(均方根误差 RMSE=2.553 m);深水区反演中,汉库水域采用多波段随机森林模型表现最佳(RMSE=2.428 m),丹库水域采用BP神经网络模型表现最佳(RMSE=1.599 m);不同反演模型精度针对不同水深和不同区域具有差异性,多波段随机森林模型在深水水下地形反演上存在优势。研究结果可为缺资料大型水体提供一种快捷的地形资料收集方法。
Abstract:
To address the difficulty of obtaining underwater topography data for large water bodies with insufficient data, Danjiangkou Reservoir was selected as the study area, and a retrieval method based on Landsat remote sensing imagery and water depth zoning was proposed. The underwater topography of the shallow and deep water areas of the reservoir was reconstructed using the waterline kriging interpolation method and four water depth inversion models (single-band, dual-band ratio, BP neural network, and multi-band random forest), and the inversion accuracy was evaluated. The results showed that the underwater topography inversion in the shallow water area performed well (Root Mean Square Error, RMSE=2.553 m). In the deep water area, the multi-band random forest model performed best in the Han Reservoir area (RMSE=2.428 m), while the BP neural network model performed best in the Dan Reservoir area (RMSE=1.599 m). The accuracy of different inversion models varied across different depths and regions, with the multi-band random forest model demonstrating advantages in deep-water topography inversion. The findings provide a rapid method for collecting topographic data for large water bodies with insufficient data.

参考文献/References:

[1] CHENG J, MA Y, ZHANG J Y. Water-depth-zoning inversion based on the relationship between two-band radiance data and the depth-invariant index [J]. Regional Studies in Marine Science, 2021, 44: 101790.
[2] 温开祥, 李勇, 王华, 等. 基于遥感和机器学习的内陆水体水深反演技术 [J]. 热带地理, 2020, 40(2): 314-322.
WEN K X, LI Y, WANG H, et al. Estimating inland water depth based on remote sensing and machine learning technique [J]. Tropical Geography, 2020, 40(2): 314-322.
[3] 段正贤, 左秀玲, 余克服, 等. 地貌分带下基于ICESat-2与GF-1的珊瑚礁水深遥感优化反演方法 [J]. 地理科学, 2023, 43(9): 1640-1648.
DUAN Z X, ZUO X L, YU K F, et al. Optimal bathymetry retrieval method for coral reef habitats based on ICESat-2 and GF-1 under geomorphic zoning [J]. Scientia Geographica Sinica, 2023, 43(9): 1640-1648.
[4] 黄梅花, 卢远, 童新华, 等. 基于Landsat影像的茅尾海河口地貌演变研究 [J]. 海洋测绘, 2020, 40(6): 57-60, 65.
HUANG M H, LU Y, TONG X H, et al. Study on the landform evolution of Maowei Sea Estuary based on landsat image [J]. Hydrographic Surveying and Charting, 2020, 40(6): 57-60, 65.
[5] 周欣, 刘文涛, 郑柯, 等. 高分十四号高光谱影像浅海水深反演应用 [J]. 海洋测绘, 2024, 44(2): 56-59, 65.
ZHOU X, LIU W T, ZHENG K, et al. Application of GF-14 satellite hyperspectral image in shallow sea depth inversion [J]. Hydrographic Surveying and Charting, 2024, 44(2): 56-59, 65.
[6] 杨晓彤, 焦红波, 李艳雯, 等. 两种浅海水深快速反演方法对比研究 [J]. 测绘科学, 2017, 42(11): 177-183.
YANG X T, JIAO H B, LI Y W, et al. Comparative research of two methods for fast waterdepthretrieval for shallow water [J]. Science of Surveying and Mapping, 2017, 42(11): 177-183.
[7] 汪万智, 邹欣庆, 李海宇. 南海珊瑚礁光学浅海水域多光谱遥感水深反演 [J]. 高校地质学报, 2022, 28(5): 758-767.
WANG W Z, ZOU X Q, LI H Y. Water depth inversion from multispectral imagery over optically shallow waters of coral reefs in South China Sea [J]. Geological Journal of China Universities, 2022, 28(5): 758-767.
[8] 史卓琳, 黄昌. 河流水情要素遥感研究进展 [J]. 地理科学进展, 2020, 39(4): 670-684.
SHI Z L, HUANG C. Recent advances in remote sensing of river characteristics [J]. Progress in Geography, 2020, 39(4): 670-684.
[9] 陆天启, 吴志芳, 任潇洒, 等. 基于GeoEye-1和WorldView-2遥感数据的浅海水深反演比较研究 [J]. 海洋学报, 2022, 44(4): 134-142.
LU T Q, WU Z F, REN X S, et al. Comparative study on shallow water depth inversion based on GeoEye-1 and WorldView-2 remote sensing data [J]. Haiyang Xuebao, 2022, 44(4): 134-142.
[10] YANG H, QIAO B J, HUANG S W, et al. Fitting profile water depth to improve the accuracy of lake depth inversion without bathymetric data based on ICESat-2 and Sentinel-2 data [J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 119: 103310.
[11] 胡琪鑫, 程亮, 楚森森, 等. ICESat-2水深提取方法及其反演应用 [J]. 地球物理学报, 2024, 67(3): 997-1012.
HU Q X, CHENG L, CHU S S, et al. Water depth extraction of ICESat-2 and application to bathymetric inversion [J]. Chinese Journal of Geophysics, 2024, 67(3): 997-1012.
[12] 曹斌, 邱振戈, 朱速龙, 等. BP神经网络遥感水深反演算法的改进 [J]. 测绘通报, 2017(2): 40-44.
CAO B, QIU Z G, ZHU S L, et al. Improvement of BPANN based algorithm for estimating water depth from satellite imagery [J]. Bulletin of Surveying and Mapping, 2017(2): 40-44.
[13] 曾书玉, 谢涛, 孔瑞瑶. 基于CatBoost和XGBoost组合模型的水深反演 [J]. 海洋测绘, 2023, 43(3): 59-63.
ZENG S Y, XIE T, KONG R Y. Water depth inversion based on CatBoost-XGBoost combined model [J]. Hydrographic Surveying and Charting, 2023, 43(3): 59-63.
[14] 李经纬, 杨红, 王春峰, 等. 基于Landsat 8卫星的江苏北部近岸海域水深遥感反演研究 [J]. 海洋湖沼通报, 2022, 44(6): 23-32.
LI J W, YANG H, WANG C F, et al. Using remote sensing to compute water depth in coastal water of North Jiangsu based on Landsat 8 satellite [J]. Transactions of Oceanology and Limnology, 2022, 44(6): 23-32.
[15] 黄茂田, 魏水亮, 唐泽艳, 等. 基于梯度提升决策树模型的Sentinel-1图像浅海水深反演 [J]. 海洋科学, 2024, 48(4): 1-17.
HUANG M M, WEI Y L, TANG Z Y, et al. Retrieval of shallow water depths from Sentinel-1 images based on a gradient boosting decision tree model [J]. Marine Sciences, 2024, 48(4): 1-17.
[16] 蓝歆玫, 李佳, 叶杨, 等. 结合贝叶斯特征选择的近海水深反演方法研究 [J]. 海洋通报, 2024: 1-8. (2024-03-07).
LAN X M, LI J, YE Y, et al. Research on offshore water depth inversion method combined with Bayesian feature selection [J]. China Industrial Economics, 2024: 1-8. (2024-03-07). http://kns.cnki.net/KCMS/detail/detail.aspx?filename = HUTB2024030200B&dbname=CJFD&dbcode=CJFQ.
[17] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究 [J]. 遥感学报, 2005, 9(5): 589-595.
XU H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI) [J]. Journal of Remote Sensing, 2005, 9(5): 589-595.
[18] CEYHUN Ö, YALÇIN A. Remote sensing of water depths in shallow waters via artificial neural networks [J]. Estuarine, Coastal and Shelf Science, 2010, 89(1): 89-96.
[19] BREIMANN L. Random Forest [J]. Machine Learning, 2001,45: 5-32.
[20] 刘瑾璐, 孙德勇, 孔得雨, 等. 机器学习视角下的多光谱卫星浅海水深反演研究 [J]. 激光与光电子学进展, 2023, 60(10): 1028007.
LIU J L, SUN D Y, KONG D Y, et al. Shallow water depth inversed using multispectral satellite based on machine learning [J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028007.

备注/Memo

备注/Memo:
收稿日期:2025-04-11;修订日期:2025-06-16
基金项目:河南省重大科技专项项目(221100320200) ;院士团队科研启动项目(13432340370)
作者简介:窦明(1975— ),男,山东桓台人,郑州大学教授,博士,主要从事水资源与水环境研究,E-mail:dou_ming@163.com。
更新日期/Last Update: 2026-01-15