参考文献/References:
[1] 史如新, 王德顺, 余涛, 等. 基于 NARX 神经网络-小波分解光伏发电功率预测[J]. 郑州大学学报(工学版), 2020, 41(6): 79-84.
SHI R X, WANG D S, YU T, et al. Prediction of photovoltaic power generation based on NARX neural network-wavelet decomposition[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(6): 79-84.
[2] MA T, YANG H X, LU L. Solar photovoltaic system modeling and performance prediction[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 304-315.
[3] ALMONACID F, PÉREZ-HIGUERAS P J, FERNÁNDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy Conversion and Management, 2014, 85: 389-398.
[4] ALAM S. Prediction of direct and global solar irradiance using broadband models: Validation of REST model[J]. Renewable Energy, 2006, 31(8): 1253-1263.
[5] LI Y T, SU Y, SHU L J. An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J]. Renewable Energy, 2014, 66: 78-89.
[6] PERSSON C, BACHER P, SHIGA T, et al. Multi-site solar power forecasting using gradient boosted regression trees[J]. Solar Energy, 2017, 150: 423-436.
[7] LUO X, ZHANG D X, ZHU X. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge[J]. Energy, 2021, 225: 120240.
[8] PA M, UDDIN M N, REZAEI N. An adaptive neuro-fuzzy model-based algorithm for fault detection in PV systems[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 1919-1927.
[9] 韩晓, 王涛, 韦晓广, 等. 考虑阵列间时空相关性的超短期光伏出力预测[J]. 电力系统保护与控制, 2024, 52(14): 82-94.
HAN X, WANG T, WEI X G, et al. Ultrashort-term photovoltaic output forecasting considering spatiotemporal correlation between arrays[J]. Power System Protection and Control, 2024, 52(14): 82-94.
[10] YANG C, THATTE A A, XIE L. Multitime-scale data-driven spatio-temporal forecast of photovoltaic generation[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 104-112.
[11] 方鹏, 高亚栋, 潘国兵, 等. 基于 LSTM 神经网络的中长期光伏发电站发电量预测方法研究[J]. 可再生能源, 2022, 40(1): 48-54.
FANG P, GAO Y D, PAN G B, et al. Research on forecasting method of mid-and long-term photovoltaic generation based on LSTM neural Network[J]. Renewable Energy Resources, 2022, 40(1): 48-54.
[12] LIU W, LIU Y M, FU L, et al. Wind power forecasting method based on bidirectional long-short term memory neural network and error correction[J]. Electric Power Components and Systems, 2021, 49(13/14): 1169-1180.
[13] 王福忠, 王帅峰, 张丽. 基于 VMD-LSTM 与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L. Ultra short term power prediction of photovoltaic power generation based on vmd-lstm and error compensation[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 96-103.
[14] 朱菊萍, 魏霞, 谢丽蓉, 等. 基于 VMD 和改进 BiLSTM 的短期风电功率预测[J]. 太阳能学报, 2024, 45(6): 422-428.
ZHU J P, WEI X, XIE L R, et al. Short-term wind power prediction based on vmd and improved BiLSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 422-428.
[15] 刘杰, 从兰美, 夏远祥, 等. 基于 DBO-VMD 和 IWOA-BiLSTM 神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(8): 123-133.
LIU J, CONG L M, XIA Y X, et al. Short-term power load prediction based on DBO-VMD and an IWOA-BiLSTM neural network combination model[J]. Power System Protection and Control, 2024, 52(8): 123-133.
[16] 汪繁荣, 梅涛, 卢璐. 基于相似日聚类和 VMD-LTWDBO-BiLSTM 的短期光伏功率预测[J]. 智慧电力, 2024, 52(10): 56-63, 111.
WANG F R, MEI T, LU L. Short-term PV power prediction based on similar day clustering with VMD-LTWDBO-BiLSTM[J]. Smart Power, 2024, 52(10): 56-63, 111.
[17] 廖晓辉, 陈川川. 改进的 VMD-HT 在电能质量扰动检测中的应用[J]. 郑州大学学报(工学版), 2021, 42(1): 21-27.
LIAO X H, CHEN C C. Application of improved VMD-HT in power quality disturbance detection[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(1): 21-27.
[18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958.
[19] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[20] 彭竑, 陈江旭, 张倩, 等. 多策略改进的蜣螂搜索算法优化 3DDV-Hop 节点定位[J]. 重庆邮电大学学报(自然科学版), 2024, 36(3): 438-449.
PENG D, CHEN J X, ZHANG Q, et al. Optimization of 3DDV-Hop node localization using multi-strategy improved dung beetle search algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2024, 36(3): 438-449.