参考文献/References:
[1] 刘华军, 张瑞珏, 刘建锋, 等. 基于FPGA的高分辨率视频图像实时增强去雾系统[J]. 郑州大学学报(工学版), 2020, 41(2): 19-24.
LIU H J, ZHANG R J, LIU J F, et al. High resolution video image real-time enhancement system based on FPGA[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(2): 19-24.
[2] GAUTAM C, TIWARI N. Efficient color image contrast enhancement using Range Limited Bi-Histogram Equalization with Adaptive Gamma Correction[C]//2015 International Conference on Industrial Instrumentation and Control (ICIC). Piscataway: IEEE, 2015: 175-180.
[3] CHEN Y H, ZHU G, WANG X Q, et al. FRR-NET: a fast reparameterized residual network for low-light image enhancement[J]. Signal, Image and Video Processing, 2024, 18(5): 4925-4934.
[4] ZHOU J C, LI B S, ZHANG D H, et al. UGIF-net: an efficient fully guided information flow network for underwater image enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4206117.
[5] SHEN L, YUE Z H, FENG F, et al. MSR-net: low-light image enhancement using deep convolutional network [EB/OL]. (2017-11-07) [2024-08-11]. https://arxiv.org/abs/1711.02488.
[6] ZENG H, CAI J R, LI L D, et al. Learning image-adaptive 3D lookup tables for high performance enhancement in real-time[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2058-2073.
[7] YANG C Q, JIN M G, JIA X, et al. Adalnt: learning a dense adaptive inversion for 3D lookup tables on real-time image enhancement[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 17501-17510.
[8] OUYANG W Q, DONG Y, KANG X Y, et al. RSFNet: a white-box image enhancement approach using region-specific color filters [C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2023: 12126-12135.
[9] YAHAIOUI M L, KHARFI F, BOUKERDJA L. Resolution enhancement of neutron radiography image using combined SRCNN-POCS method [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1050: 168123.
[10] GHARBI M, CHEN J W, BARRON J T, et al. Deep bilateral learning for real-time image enhancement [J]. ACM Transactions on Graphics, 2017, 36(4): 1-12.
[11] HALIDOU A, MOHAMADOU Y, ARI A A A, et al. Review of wavelet denoising algorithms [J]. Multimedia Tools and Applications, 2023, 82(27): 41539-41569.
[12] LUO Y C, ZHANG Y, YAN J C, et al. Generalizing face forgery detection with high-frequency features [J]. (2021-03-23) [2024-08-11]. https://arxiv.org/abs/2103.12376.
[13] BAI J W, YUAN L, XIA S T, et al. Improving vision transformers by Revisiting high-frequency components [C]//Computer Vision – ECCV 2022. Cham: Springer, 2022: 1-18.
[14] XU K, YANG X, YIN B C, et al. Learning to restore low-light images via decomposition-and-enhancement [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 2278-2287.
[15] 常青, 杨程伟, 罗彬杰, 等. 基于小波变换的扩散焊超声C图像融合算法[J]. 郑州大学学报(工学版), 2023, 44(4): 54-59, 87.
CHANG Q, YANG C W, LUO B J, et al. Ultrasonic C image fusion algorithm for diffusion welding based on wavelet transform [J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(4): 54-59, 87.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[17] DUHAMEL P, VETTERLI M. Fast Fourier transforms: a tutorial review and a state of the art [J]. Signal Processing, 1990, 19(4): 259-299.
[18] BYCHKOVSKY V, PARIS S, CHAN E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs [C]//CVPR 2011. Piscataway: IEEE, 2011: 97-104.
[19] LIANG J, ZENG H, CUI M M, et al. PPR10K: a large-scale portrait photo retouching dataset with human-region mask and group-level consistency [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 00071.
[20] WANG Z, BOVIK A, SHEIKH H R, et al. Image Quality Assessment: From Error Visibility to Structural Similarity [EB/OL]. (2014-01-01) [2024-07-16]. https://www.researchgate.net/publication/312771295 _Image_quality_assessment_From_error_visibility_to_structural_similarity.
[21] KE Z H, SUN C Y, ZHU L, et al. Harmonizer: learning to Perform white-box image andVideo harmonization [C]//Computer Vision – ECCV 2022. Cham: Springer, 2022: 690-706.
[22] HE J W, LIU Y H, QIAO Y, et al. Conditional sequential modulation for efficient global image retouching [C]//Computer Vision – ECCV 2020. Cham: Springer, 2020: 679-695.