[1]MOSLEH S, CODER J B, SCULLY C G, et al. Monitoring respiratory motion with Wi-Fi CSI: characterizing performance and the breathe smart algorithm[J]. IEEE Access, 2022, 10: 131932-131951. [2]TANG Z L, LIU Q Q, WU M J, et al. Wi-Fi CSI gesture recognition based on parallel LSTM-FCN deep space-time neural network[J]. China Communications, 2021, 18 (3): 205-215.
[3]HAMEED H, USMAN M, TAHIR A, et al. Pushing the limits of remote RF sensing by reading lips under the face mask[J]. Nature Communications, 2022, 13: 5168.
[4]SHALABY E, ELSHENNAWY N, SARHAN A. Utilizing deep learning models in CSI-based human activity recognition[J]. Neural Computing and Applications, 2022, 34(8): 5993-6010.
[5]WANG J C, TIAN Z S, ZHOU M, et al. Leveraging hypothesis testing for CSI based passive human intrusion direction detection[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7749-7763.
[6]BRENA R F, ESCUDERO E, VARGAS-ROSALES C, et al. Device-free crowd counting using multi-link Wi-Fi CSI descriptors in Doppler spectrum[J]. Electronics, 2021, 10(3): 315.
[7]SOTO J C H, GALDINO I, CABALLERO E, et al. A survey on vital signs monitoring based on Wi-Fi CSI data [J]. Computer Communications, 2022, 195: 99-110.
[8]KOTARU M, KATTI S. Position tracking for virtual reality using commodity Wi-Fi[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 2671-2681.
[9]XU Q Y, HAN Y, WANG B B, et al. Indoor events monitoring using channel state information time series[J]. IEEE Internet of Things Journal, 2019, 6 (3): 4977-4990.
[10] GU Y, REN F J, LI J. PAWS: passive human activity recognition based on Wi-Fi ambient signals[J]. IEEE Internet of Things Journal, 2016, 3(5): 796-805.
[11] HALPERIN D, HU W J, SHETH A, etal. Tool release: gathering 802.11n traces with channel state information [J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53.
[12] LI F M, AL-QANESS M, ZHANG Y, et al. A robust and device-free system for the recognition and classification of elderly activities[J]. Sensors, 2016, 16(12): 2043.
[13] GUO L L, WANG L, LIN C, et al. Wiar: apublic dataset for Wi-Fi-based activity recognition[J]. IEEE Access, 2019, 7: 154935-154945.
[14] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradientbased learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[15] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 6645-6649.
[16] MOSHIRI P F, SHAHBAZIAN R, NABATI M, et al. A CSI-based human activity recognition using deep learning [J]. Sensors, 2021, 21(21): 7225.
[17] SHI Z G, ZHANG J A, XU R, et al. Deep learning networks for human activity recognition with CSI correlation feature extraction[C]∥ICC2019-2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE, 2019: 1-6.
[18] SHANG S N, LUO Q Y, ZHAO J J, et al. LSTM-CNN network for human activity recognition using Wi-Fi CSI data[J]. Journal of Physics: Conference Series, 2021, 1883(1): 012139.
[19] YAMAK P T, LIY J, GADOSEY P K, et al. A comparison between ARIMA, LSTM, and GRU for time series forecasting[C]∥Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence.New York: ACM, 2020: 49-55.
[20] MING X, CHENG W, ZHU R L, et al. Human activities recognition with amplitude-phase of channel state information using deep residual networks[C]∥2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA).Piscataway: IEEE, 2022: 1-6.
[21] ALSAIFY B A, ALMAZARI M M, ALAZRAI R, et al. A dataset for Wi-Fi-based human activity recognition in line-of-sight and non-line-of-sight indoor environments [J]. Data in Brief, 2020, 33: 106534.
[22] SHOWMIK I A, SANAM T F, IMTIAZ H. Human activity recognition from Wi-Fi CSI data using principal component-based wavelet CNN[J]. Digital Signal Processing, 2023, 138: 104056.
[23] ZHOU Q Z, XING J C, YANG Q L, et al. Measuring intrinsic human activity information using Wi-Fi-based attention model[J]. Measurement, 2022, 195: 111084.
[24] GUO L L, ZHANG H, WANG C, et al. Towards CSIbased diversity activity recognition via LSTM-CNN encoder-decoder neural network [J]. Neurocomputing, 2021, 444: 260-273.