[1]蒋建东,赵云飞,韩文轩,等.基于组合深度学习的风电功率区间预测[J].郑州大学学报(工学版),2025,46(03):50-58.[doi:10.13705/j.issn.1671-6833.2025.03.020]
 JIANG Jiandong,ZHAO Yunfei,HAN Wenxuan,et al.Wind Power Interval Prediction Based on Combined Deep Learning[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):50-58.[doi:10.13705/j.issn.1671-6833.2025.03.020]
点击复制

基于组合深度学习的风电功率区间预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
50-58
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
Wind Power Interval Prediction Based on Combined Deep Learning
文章编号:
1671-6833(2025)03-0050-09
作者:
蒋建东1 赵云飞1 韩文轩1 燕跃豪2 鲍 薇2 刘晓辉2
1.郑州大学 电气与信息工程学院,河南 郑州 450001;2.国网河南省电力公司郑州供电公司,河南 郑州 450006
Author(s):
JIANG Jiandong1 ZHAO Yunfei1 HAN Wenxuan1 YAN Yuehao2 BAO Wei2 LIU Xiaohui2
1.School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Zhengzhou Power Supply Company,State Grid Henan Electric Power Company, Zhengzhou 450006,China
关键词:
风电功率区间预测 蜣螂优化算法 变分模态分解 非参数核密度估计
Keywords:
wind power interval prediction dung beetle optimization algorithm variational mode decomposition kernel density estimation
分类号:
TM614
DOI:
10.13705/j.issn.1671-6833.2025.03.020
文献标志码:
A
摘要:
为了提高风电功率区间预测的精度,提出了一种基于组合深度学习的风电功率区间预测模型。首先,针对传统蜣螂优化算法(DBO)存在全局寻优能力和局部探索能力不均衡的问题,提出了一种改进的蜣螂优化算法(POTDBO)。该算法通过增强全局寻优能力并改进局部探索策略,优化变分模态分解(VMD)中的分解个数K和惩罚因子β,从而提高VMD的分解效果。其次,基于优化后的VMD分解结果,构建了组合深度学习模型POTDBOVMD-CNN-BiLSTM。该模型利用卷积神经网络(CNN)提取风电功率的空间特征,并结合双向长短期记忆网络(BiLSTM)充分捕捉数据中的历史信号特征和未来信号特征,对各分量分别预测并叠加重构,从而实现了风电功率的准确预测。再次,引入了非参数核密度估计法(KDE)对组合模型的预测误差进行拟合,从而得到不同置信区间下的风电功率区间预测结果。最后,运用新疆某风电场的实际运行数据对所提模型进行了验证。仿真结果表明:在置信水平为95%时,与高斯分布、T分布相比,所提方法在预测区间覆盖宽度CWC上分别降低了0.103 6, 0.171 4,在区间预测精度上有所提升。
Abstract:
To improve the accuracy of wind power interval prediction, in this study, a combined deep learningbased wind power interval prediction model was proposed. Firstly, to address the imbalance between global optimization ability and local exploration in the traditional dung beetle optimization (DBO) algorithm, an improved version POTDBO was introduced. This algorithm enhanced the global search capability and improved the local search strategy. By optimizing the decomposition number K and penalty factor β in the variational mode decomposition (VMD), thus it improved the decomposition performance of VMD. Secondly, based on the optimized VMD decomposition results, a combined deep learning model, POTDBO-VMD-CNN-BiLSTM, was established. In this model, convolutional neural networks (CNN) were used to extract the spatial features of wind power, and a bidirectional long short-term memory (BiLSTM) network was applied to capture both historical and future signal features in the data. The individual components were predicted and then combined to reconstruct the wind power prediction accurately. To perform interval prediction for wind power, in this study the non-parametric kernel density estimation (KDE) method was introduced to fit the prediction errors of the combined model, then to obtain wind power interval prediction results at different confidence levels. Finally, the proposed model was validated using actual operation data from a wind farm in Xinjiang. Simulation results showed that, at a 95% confidence level, compared to the Gaussian and T-distribution models, the proposed method reduced the prediction interval coverage width (CWC) by 0.103 6 and 0.171 4, respectively, while improving the interval prediction accuracy.

参考文献/References:

[1]张文煜, 马可可, 郭振海, 等. 基于灰狼算法和极限学习机的风速多步预测[J]. 郑州大学学报(工学版), 2024, 45(2): 89-96. 

ZHANG W Y, MA K K, GUO Z H, et al. Multistep prediction of wind speed based on grey wolf algorithm and extreme learning machine[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 89-96. 
[2]WANG S, LI B, LI G Z, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration [J]. Applied Energy, 2021, 292: 116851. 
[3]LIU W, LIU Y M, FU L, et al. Wind power forecasting method based on bidirectional long short-term memory neural network and error correction[J]. Electric Power Components and Systems, 2021, 49 ( 13/14): 1169-1180. 
[4]LI Z, XU R S, LUO X R, et al. Short-term wind power prediction based on modal reconstruction and CNNBiLSTM[J]. Energy Reports, 2023, 9: 6449-6460. 
[5]李润金, 李丽霞. 基于VMD-CNN-LSTM模型的短期风电功率预测[J]. 沈阳工程学院学报(自然科学版), 2024, 20(1): 6-13. 
LI R J, LI L X. Short-term wind power prediction based on VMD-CNN-LSTM model[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2024, 20(1): 6-13. 
[6]任鹏, 付文杰, 申洪涛, 等. 基于竞争学习机制的LSTM风电多目标区间预测[J]. 计算机应用与软件, 2024, 41(6): 305-311, 349. 
REN P, FU W J, SHEN H T, et al. Multiple objective interval prediction of LSTM wind power based on competitive learning mechanism[J]. Computer Applications and Software, 2024, 41(6): 305-311, 349. 
[7]陈申, 叶小岭, 熊雄, 等. 基于天鹰优化算法的短期风电功率区间预测[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 304-314. 
CHEN S, YE X L, XIONG X, et al. Short-term wind power interval prediction based on Aquila optimization algorithm[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(4): 304-314. 
[8]韩丽, 于晓娇, 喻洪波, 等. 基于波动趋势分段的风电功率区间预测[J]. 电力系统自动化, 2023, 47 (18): 206-215. 
HAN L, YU X J, YU H B, et al. Wind power interval prediction based on fluctuation trend segmentation[J]. Automation of Electric Power Systems, 2023, 47(18): 206-215. 
[9]崔颢, 马平. 基于优化BP神经网络和非参数估计的风功率区间预测[J]. 电子设计工程, 2022, 30(13): 6-10. 
CUI H, MA P. Wind power interval prediction based on optimized BP neural network and non-parametric estimation[J]. Electronic Design Engineering, 2022, 30(13): 6-10. 
[10]吴亚钧, 王璐, 张金江. 基于IDBO-LightGBM的光伏阵列故障诊断方法[J/OL]. 电源学报, 2024: 1-15 (2024-04-26)[2024-12-13]. http:∥kns. cnki.net/ KCMS/detail/detail. aspx? filename = DYXB20240423 01E&dbname=CJFD&dbcode=CJFQ. 
WU Y J, WANG L, ZHANG J J. Fault diagnosis method of photovoltaic array based on IDBO-LightGBM[J/OL]. China Industrial Economics, 2024: 1-15(2024-04-26) [2024-12-13]. http:∥kns.cnki.net/KCMS/detail/detail. aspx? filename=DYXB2024042301 E&dbname = CJFD&dbcode=CJFQ. 
[11]郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946. 
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18 (4): 930-946. 
[12] DEHGHANI M, TROJOVSKY P. Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanical Engineering, 2023, 8: 1126450. 
[13]唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. 
TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81. 
[14]赵志浩. 面向手机部件的目标区域检测算法的设计与实现[D]. 北京: 中国科学院大学(中国科学院沈阳计算技术研究所), 2020. 
ZHAO Z H. Design and implementation of target area detection algorithm for mobile phone components[D]. Beijing: Institute of Computing Technology, Chinese Academy of Sciences, 2020. 
[15]饶志, 王科, 谭俊丰, 等. 基于最优带宽的广东海上风电出力非参数核密度估计与分析[J]. 太阳能学报, 2023, 44(12): 274-282. 
RAO Z, WANG K, TAN J F, et al. Non-parametric kernel density estimation and analysis of Guangdong offshore wind power output based on optimal bandwidth[J]. Acta Energiae Solaris Sinica, 2023, 44. 
[16]宋绍剑, 姜屹远, 刘斌. 一种TCN的改进模型及其在短期光伏功率区间预测的应用[J]. 计算机应用研究, 2023, 40(10): 3064-3069. 
SONG S J, JIANG Y Y, LIU B. Improved TCN model and its application in short-term photovoltaic power interval prediction[J]. Application Research of Computers, 2023, 40(10): 3064-3069. 
[17]饶志, 杨再敏, 蒙文川, 等. 基于改进型非参数核密度估计法的南方区域风电出力特性分析[J]. 电网与清洁能源, 2022, 38(6): 81-88, 97. 
RAO Z, YANG Z M, MENG W C, et al. An analysis of wind power output characteristics in Southern China Region based on improved non-parametric kernel density estimation[J]. Power System and Clean Energy, 2022, 38 (6): 81-88, 97. 
[18]吴永斌, 张建忠, 邓富金, 等. 基于方差变化率判据四分位的风电场功率异常数据识别[J]. 电力工程技术, 2023, 42(4): 141-148. 
WU Y B, ZHANG J Z, DENG F J, et al. Anomaly data identification of wind power in wind farm with the criterion of variance change rate and quartile[J]. Electric Power Engineering Technology, 2023, 42(4): 141-148. 
[19]孙亚南, 黄越辉, 孙谊媊, 等. 基于运行数据的短期风电功率预测误差互补特性探析[J]. 电力系统自动化, 2021, 45(21): 215-223. 
SUN Y N, HUANG Y H, SUN Y Q, et al. Operation data based analysis on complementary characteristics of short-term power prediction error for wind power[J]. Automation of Electric Power Systems, 2021, 45(21): 215-223. 
[20]李津, 史加荣, 张琰妮, 等. 基于最大信息系数的短期太阳辐射协同估计[J]. 太阳能学报, 2023, 44 (9): 286-294. 
LI J, SHI J R, ZHANG Y N, et al. Short-term solar radiation synergy estimation based on maximum information coefficient[J]. Acta Energiae Solaris Sinica, 2023, 44 (9): 286-294.

更新日期/Last Update: 2025-05-22