[1]李嫚嫚,雷海泷,赵博选.考虑众包员供给动态性的末端配送优化方法[J].郑州大学学报(工学版),2025,46(06):102-111.[doi:10.13705/j.issn.1671-6833.2025.06.001]
 LI Manman,LEI Hailong,ZHAO Boxuan.Optimization Method for Last Mile Delivery Considering Supply Dynamics of Crowdsourced Personnel[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):102-111.[doi:10.13705/j.issn.1671-6833.2025.06.001]
点击复制

考虑众包员供给动态性的末端配送优化方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
102-111
栏目:
出版日期:
2025-10-22

文章信息/Info

Title:
Optimization Method for Last Mile Delivery Considering Supply Dynamics of Crowdsourced Personnel
文章编号:
1671-6833(2025)06-0102-10
作者:
李嫚嫚 雷海泷 赵博选
长安大学 汽车学院,陕西 西安 710021
Author(s):
LI Manman LEI Hailong ZHAO Boxuan
School of Automobile, Chang’an University, Xi’an 710021, China
关键词:
物流工程 末端配送 众包模式 众包供给动态性 车辆路径 自适应大邻域搜索算法
Keywords:
logistics engineering last mile delivery crowdsourced mode supply dynamics of crowdsourced personnel vehicle routing adaptive large neighborhood search algorithm
分类号:
U9TP29F252.1
DOI:
10.13705/j.issn.1671-6833.2025.06.001
文献标志码:
A
摘要:
考虑众包员供给动态性,针对自营配送员与众包员共存情景,提出了一种末端配送优化方法。以众包员报酬、客户指派方案以及多行程车辆路径为待优化决策,基于时空网络建立客户服务约束、载重约束、时间窗约束以及车辆-众包员时空协同约束,构建以最小化配送成本为目标的混合配送优化模型。根据问题特征改进最小成本插入法、设计10种破坏算子,并依据模拟退火算法思想接受差解改进自适应大邻域算法求解模型,获取末端配送方案。结果表明:对于100个客户的案例,改进自适应大邻域算法以平均48.5 s获得的配送成本比GUROBI耗时1 h的更低,平均降低了24%;与模拟退火相比,改进自适应邻域算法获得的配送成本也更低,最大降低了5.5%。协同自营配送员与众包员的混合配送模式比自营配送模式的配送成本低;混合配送模式适用于时间窗紧凑、车辆行驶成本高、就业机会少的末端配送场景;众包员供给动态性显著且随机地影响混合配送模式的配送成本。
Abstract:
Considering the supply dynamics of crowdsourced personnel, an optimization method was proposed for last-mile delivery in scenarios involving both self-operated personnel and crowdsourced personnel in this study. A hybrid delivery optimization model was developed to minimize delivery costs, incorporating decision variables such as crowdsourced personnel compensation, customer assignment schemes, and multi-trip vehicle routing. The constraints was constructed based on a spatio-temporal network, including customer service requirements, load capacities, time windows, and spatio-temporal coordination between vehicles and crowdsourced personnel. To address the problem′s characteristics, the minimal cost insertion algorithm was improved, and ten types of destruction operators were designed. An adaptive large neighborhood search algorithm was then improved by integrating the simulated annealing algorithm′s concept of accepting inferior solutions to optimize delivery plans.Case studies with 100 customers demonstrated that the improved adaptive large neighborhood search algorithm achieved solutions with 24% lower in delivery cost on average compared with those obtained by GUROBI with 1 hour computation time, while taking only 48.5 seconds on average. The proposed algorithm also outperformed simulated annealing, achieving a maximum cost reduction of 5.5%. The hybrid delivery mode combining self-operated and crowdsourced personnel significantly reduced costs compared to the self-operated-personnel only mode. The hybrid mode proved particularly suitable for scenarios with tight time windows, high vehicle travel costs, and limited job opportunities. The supply dynamics of crowdsourced personnel exhibited significant and stochastic impacts on delivery costs.

参考文献/References:

[1]杜子超, 卢福强, 王素欣, 等. 众包物流配送车辆调度模型及优化[J]. 东北大学学报(自然科学版), 2021, 42(8): 1210-1216. 

DU Z C, LU F Q, WANG S X, et al. Vehicle scheduling model and optimization of crowdsourcing logistics distribution[J]. Journal of Northeastern University (Natural Science), 2021, 42(8): 1210-1216. 
[2]孟秀丽, 吴一凡, 刘波. 考虑延误险的多期众包物流服务质量优化[J]. 中国管理科学, 2023, 31(12): 87-95. 
MENG X L, WU Y F, LIU B. Multi-period crowdsourcing logistics service quality optimization considering delay insurance[J]. Chinese Journal of Management Science, 2023, 31(12): 87-95. 
[3]ARCHETTI C, SAVELSBERGH M, SPERANZA M G. The vehicle routing problem with occasional drivers[J]. European Journal of Operational Research, 2016, 254 (2): 472-480. 
[4]MACRINA G, DIPUGLIAPUGLIESEL, GUERRIERO F, et al. The vehicle routing problem with occasional drivers and time windows[C]∥ Optimization and Decision Science:Methodologiesand Applications. Cham: Springer, 2017: 577-587. 
[5]MACRINA G, DIPUGLIAPUGLIESEL, GUERRIERO F, et al. Crowd-shipping with time windows and transshipment nodes[J]. Computers & Operations Research, 2020, 113: 104806. 
[6]杨华龙, 梁晓萍, 王征, 等. 允许中转与绕行的众包同城配送司机包裹匹配优化[J]. 控制与决策, 2024, 39(3): 1021-1029. 
YANG H L, LIANG X P, WANG Z, et al. Optimization of driver-parcel matching for crowdsourced intra-city delivery with multi-hop and detour[J]. Control and Decision, 2024, 39(3): 1021-1029. 
[7]DAYARIAN I, SAVELSBERGH M. Crowdshipping and same-day delivery: employing in-store customers to deliver online orders[J]. Production and Operations Management, 2020, 29(9): 2153-2174. 
[8]SCHUR R, WINHELLER K. Optimizing last-mile delivery: a dynamic compensation strategy for occasional drivers[EB/OL]. (2024-12-26)[2025-02-10]. https:∥ doi.org/10.1007/s00291-024-00796-6. 
[9]DAI H Y, LIU P. Workforce planning for O2O delivery systems with crowdsourced drivers[J]. Annals of Operations Research, 2020, 291(1): 219-245. 
[10] YILDIZ B, SAVELSBERGH M. Service and capacity planning in crowd-sourced delivery[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 177-199. 
[11] LE T V, UKKUSURI S V, XUE J W, et al. Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems [J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102209. 
[12]王会静,袁鹏程.考虑骑手异质性的众包配送策略优化[J].计算机系统应用,2024,33(12):210-221. 
WANG H J, YUAN P C. Optimization of crowdsourcing delivery strategy considering rider heterogeneity[J].Computer Systems & Applications,2024,33(12):210-221. 
[13]张念, 刘志学, 李锋. 考虑服务供应能力和服务质量的众包物流服务定价策略[J]. 管理学报, 2024,21 (1): 127-136. 
ZHANG N, LIU Z X, LI F. Pricing strategy for crowdsourced logistics services considering service supply capacity and service quality[J]. Chinese Journal of Management, 2024,21(1): 127-136. 
[14]王文杰, 孙中苗, 徐琪. 考虑社会配送供应能力的众包物流服务动态定价模型[J]. 管理学报, 2018, 15 (2): 293-300,316. 
WANG W J, SUN Z M, XU Q. Dynamic pricing for crowdsourcing logistics services with socialized providers [J]. Chinese Journal of Management, 2018, 15(2): 293-300,316. 
[15]张燕, 李子鑫, 刘进平. 考虑工作量平衡的餐饮垃圾多行程收运路线优化[J]. 交通运输系统工程与信息, 2023, 23(6): 239-249. 
ZHANG Y, LI Z X, LIU J P. Multi-trip food waste collection routing optimization with workload balance[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(6): 239-249. 
[16] HUANG N, QIN H, XU G Y, et al. An enhanced exact algorithm for the multi-trip vehicle routing problem with time windows and capacitated unloading station[J]. Computers & Operations Research, 2024, 168: 106688. 
[17] ZHAO M, LI X P, YIN J T, et al. An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: model formulation and Lagrangian relaxation-based solution approach[J]. Transportation Research Part B: Methodological, 2018, 117: 542-572. 
[18] XU M, MENG Q, LIU Z Y. Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment[J]. Transportation Research Part B: Methodological, 2018, 111: 60-82. 
[19] CHEN X Q, ZHENG H Y, KE J T, et al. Dynamic optimization strategies for on-demand ride services platform: surge pricing, commission rate, and incentives[J]. Transportation Research Part B: Methodological, 2020, 138: 23-45. 
[20] YAO C Q, CHEN S B, YANG Z Y. Joint routing and charging problem of multiple electric vehicles: a fast optimization algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8184-8193. 
[21]陈可嘉, 司徒腾宽, 方云飞, 等. 灵活车场多类型叫车接送问题的改进模拟退火算法[J/OL]. 控制理论与应用, 2024:1-9. (2024-10-11)[2025-02-18].http:∥kns.cnki. net/kcms/detail/44.1240.TP.20241010.1711.034.html. 
CHEN K J, SITU T K, FANG Y F, et al. Improved simulated annealing algorithm for multiple depotsheterogeneous dial-a-ride problem with flexible depots[J/OL]. Control Theory & Applications, 2024:1-9. (2024-1011)[2025-02-18]. http:∥kns. cnki. net/kcms/detail/ 44.1240.TP.20241010.1711.034.html. 
[22]靳文舟, 邓钦原, 郝小妮, 等. 改进人工蜂群算法的农村DRT路径优化研究[J]. 郑州大学学报(工学版), 2021, 42(4): 84-90. 
JIN W Z, DENG Q Y, HAO X N, et al. Research on route optimization of rural DRT based on improved ABC algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4): 84-90. 
[23]何美玲, 杨梅, 韩珣, 等. 带时间窗的时间依赖型同时取送货车辆路径问题研究[J]. 交通运输系统工程与信息, 2024,24(4): 231-242, 262. 
HE M L, YANG M, HAN X, et al. Time-dependent vehicle routing optimization considering simultaneous pickup-delivery and time windows[J]. Journal of Transportation Systems Engineering and Information Technology, 2024,24(4): 231-242, 262. 
[24]李嫚嫚, 孙加辉, 丁楠, 等. 考虑服务定价的选择性众包配送优化[J]. 浙江大学学报(工学版), 2023, 57(8): 1495-1504. 
LI M M, SUN J H, DING N, et al. Selective crowdsourcing distribution optimization considering service pricing[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(8): 1495-1504. 
[25] SOLOMON M M. Algorithms for the vehicle routing and scheduling problem with time window constraints[J]. Operations Research, 1987, 35(2): 254-265. 
[26]张晓楠, 范厚明. 带时间窗偏好的多行程模糊需求车辆路径优化[J]. 计算机集成制造系统, 2018,24 (10): 2461-2477. 
ZHANG X N, FAN H M. Optimization for multi-trip vehicle routing problem with fuzzy demands considering time window preference[J]. Computer Integrated Manufacturing Systems, 2018,24(10): 2461-2477.

更新日期/Last Update: 2025-10-21