[1]郭 磊,张雨晴,宋 原.基于自适应滑模的四轮移动机器人轨迹跟踪控制[J].郑州大学学报(工学版),2025,46(03):11-18.[doi:10.13705/j.issn.1671-6833.2025.03.015]
 GUO Lei,ZHANG Yuqing,SONG Yuan.Trajectory Tracking Control of a Four-wheel Mobile Robot Based on Adaptive Sliding Mode Control[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):11-18.[doi:10.13705/j.issn.1671-6833.2025.03.015]
点击复制

基于自适应滑模的四轮移动机器人轨迹跟踪控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
11-18
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
Trajectory Tracking Control of a Four-wheel Mobile Robot Based on Adaptive Sliding Mode Control
文章编号:
1671-6833(2025)03-0011-08
作者:
郭 磊1 张雨晴2 宋 原1
1.北京邮电大学 智能工程与自动化学院,北京 100876;2.北京邮电大学 人工智能学院,北京 100876
Author(s):
GUO Lei1 ZHANG Yuqing2 SONG Yuan1
1.School of Intelligent Engineering and Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2.School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
关键词:
四轮移动机器人 轨迹跟踪 终端滑模控制 自适应滑模控制 高斯过程回归 强化学习
Keywords:
four-wheel mobile robot trajectory track terminal sliding mode control adaptive sliding mode control Gaussian process regression reinforcement learning
分类号:
TP13 TP242.6
DOI:
10.13705/j.issn.1671-6833.2025.03.015
文献标志码:
A
摘要:
针对滑模控制中具有未知界的非匹配不确定性的估计与补偿问题,提出了一种适用于四轮移动机器人的非奇异终端滑模控制器,不需要已知界的不确定性的先验知识。为了保证滑模面的存在性,引入高斯过程回归对非匹配不确定性进行在线估计,一方面避免采用高增益的控制,从而减小了控制量抖振;另一方面,通过高斯过程回归的估计结果对系统的不确定性进行补偿,从而提高了基于模型的滑模控制器的适应性。基于近端策略优化 (PPO)算法设计了一种自适应终端滑模控制器,通过控制精度和控制输入的抖振幅度来构建奖励函数,以此对滑模控制器的参数进行自适应调整,从而减小抖振并提高跟踪精度。通过李雅普诺夫稳定性分析证明了非奇异终端滑模控制器的稳定性,基于数值仿真实验验证了所设计控制器的有效性。结果表明:与传统的终端滑模相比,所提出的自适应终端滑模控制器在保持较高控制精度的同时,抖振振幅减小了90%,优于传统的控制方法。
Abstract:
This study aimed to address the estimation and compensation of unmatched uncertainties with unknown bounds in sliding mode control. A non-singular terminal sliding mode controller was designed for a four-wheel mobile robot. To ensure the existence of the sliding surface, Gaussian process regression (GPR) was employed for online estimation of the unmatched uncertainties. GPR not only estimated the bound of the uncertainties but also provided the mean and variance, which allows for a more robust estimation. On the one hand, the use of GPR for uncertainty estimation could help avoid the use of high-gain control, thereby reducing control chattering. On the other hand, the uncertainty compensation based on the estimates from GPR could enhance the adaptability of the modelbased sliding mode control algorithm. Additionally, an adaptive terminal sliding mode controller was designed based on the proximal policy optimization (PPO) algorithm. A reward function was constructed with the objective of improving control accuracy and minimizing control input chattering, which could enable the adaptive adjustment of the sliding mode controller’s parameters. The stability of the non-singular terminal sliding mode controller was proven through Lyapunov stability analysis. The effectiveness of the proposed control algorithm is validated through numerical simulations. The results demonstrated that the adaptive terminal sliding mode controller based on GPR significantly reduced by 90% while achieving high control accuracy, outperforming traditional control methods.

参考文献/References:

[1]FRIDMANL,BARBOTJP,PLESTANF. Recent trends in sliding mode control[M]. Stevenage, Herts, United Kingdom: The Institute of Engineering and Technology, 2016. 

[2]FENG Y, YU X H, HAN F L. On nonsingular terminal sliding-mode control of nonlinear systems[J]. Automatica, 2013, 49(6): 1715-1722. 
[3]NGUYEN N P, OH H, MOON J, et al. Multivariable disturbance observer-based finite-time sliding mode attitude control for fixed-wing UAVs under matched and mismatched disturbances[J]. IEEE Control Systems Letters, 2023, 7: 1999-2004. 
[4]王群京, 刘中阳, 李国丽, 等. 基于自适应干扰观测器的永磁球形电机连续非奇异终端滑模控制[J]. 电机与控制学报, 2022, 26(8): 66-78. 
WANG Q J, LIU Z Y, LI G L, et al. Adaptive disturbance observer-based continuous nonsingular terminal sliding-mode control for permanent-magnet spherical actuator [J]. Electric Machines and Control, 2022, 26(8): 6678. 
[5]ZEGHLACHE S, GHELLAB M Z, DJERIOUI A, et al. Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults[J]. Mathematics and Computers in Simulation, 2023, 210: 207-234. 
[6]GUO X C, WEI G L. Disturbance observer-based fixedtime leader-following consensus control for multiple EulerLagrange systems: a non-singular terminal sliding mode scheme[J]. Journal of the Franklin Institute, 2023, 360 (9): 6463-6489. 
[7]HONG M Q, GU X T, LIU L X, et al. Finite time extended state observer based nonsingular fast terminal sliding mode control of flexible-joint manipulators with unknown disturbance[J]. Journal of the Franklin Institute, 2023, 360(1): 18-37. 
[8]MOBAYEN S, BAYAT F, DIN S U, et al. Barrier function-based adaptive nonsingular terminal sliding mode control technique for a class of disturbed nonlinear systems[J]. ISA Transactions, 2023, 134: 481-496. 
[9]YAO M, XIAO X, TIAN Y, et al. A fast terminal sliding mode control scheme with time-varying sliding mode surfaces[J]. Journal of the Franklin Institute, 2021, 358 (10): 5386-5407. 
[10] CUPERTINO F, NASO D, MININNO E, et al. Slidingmode control with double boundary layer for robust compensation of payload mass and friction in linear motors [J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1688-1696. 
[11] CHEN J C, SHUAI Z B, ZHANG H, et al. Path following control of autonomous four-wheel-independent-drive electric vehicles via second-order sliding mode and nonlinear disturbance observer techniques[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2460-2469. 
[12]WANG T Q, WANG B, YU Y, et al. Fast high-order terminal sliding-mode current controller for disturbance compensation and rapid convergence in induction motor drives[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9593-9605. 
[13] ZHANG L, NAN H J, ZHAO Z Q, et al. Adaptive disturbance observer-based dual-loop integral-type fast terminal sliding mode control for micro spacecraft and its gimbal tracking device[J]. ISA Transactions, 2022, 130: 121-135. 
[14] SU X J, QING F D, CHANG H B, et al. Trajectory tracking control of human support robots via adaptive sliding-mode approach[J]. IEEE Transactions on Cybernetics, 2024, 54(3): 1747-1754. 
[15] SUN H L, GAO L L, ZHAO Z X, et al. Adaptive supertwisting fast nonsingular terminal sliding mode control with ESO for high-pressure electro-pneumatic servo valve [J]. Control Engineering Practice, 2023, 134: 105483. 
[16] RABIEE H, ATAEI M, EKRAMIAN M. Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems[J]. Automatica, 2019, 109: 108515. 
[17] YANG J, LI S H, YU X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 160-169. 
[18] BERNARD P. Observer design for nonlinear systems [M]. Berlin:Springer International Publishing,2019. 
[19] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: The MIT Press, 2005. 
[20]WU Q, DU W L. Online detection of model-plant mismatch in closed-loop systems with Gaussian processes [J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2213-2222. 
[21] ALAKBARI F S, MOHYALDINN M E, AYOUB M A, et al. A robust Gaussian process regression-based model for the determination of static Young’s modulus for sandstone rocks[J]. Neural Computing and Applications, 2023, 35 (21): 15693-15707. 
[22] BUELTA A, OLIVARES A, STAFFETTI E, et al. A Gaussian process iterative learning control for aircraft trajectory tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3962-3973. 
[23] HEWING L, KABZAN J, ZEILINGER M N. Cautious model predictive control using Gaussian process regression [J]. IEEE Transactions on Control Systems Technology, 2020, 28(6): 2736-2743. 
[24] LIMA G S, TRIMPE S, BESSA W M. Sliding mode control with Gaussian process regression for underwater robots [J]. Journal of Intelligent & Robotic Systems, 2020, 99 (3): 487-498. 
[25] SUN Y Z, LIU J X, GAO Y B, et al. Adaptive neural tracking control for manipulators with prescribed performance under input saturation[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 1037-1046. 
[26] ZHAO L, CAO X Y, LI X F. Adaptive sliding-mode control for inertial reference units via adaptive tracking differentiators[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 3208-3218. 
[27] ZAARE S, SOLTANPOUR M R. Adaptive fuzzy global coupled nonsingular fast terminal sliding mode control of n-rigid-link elastic-joint robot manipulators in presence of uncertainties[J]. Mechanical Systems and Signal Processing, 2022, 163: 108165. 
[28]王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动驾驶车控制算法研究[J]. 郑州大学学报(工学版), 2020, 41(4): 41-45, 80. 
WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning [J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 41-45, 80. 
[29]崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习自动驾驶轨迹预测[J]. 郑州大学学报(工学版), 2023, 44(5): 53-61. 
CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 53-61. 
[30] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL].(2017-08-28)[2024-07-16]. https:∥doi. org/10.48550/ arXiv.1707.06347. 
[31] CHENG Y H, HUANG L Y, WANG X S. Authentic boundary proximal policy optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9428-9438. 
[32] SHAKYA A K, PILLAI G, CHAKRABARTY S. Reinforcement learning algorithms: a brief survey[J]. Expert Systems with Applications, 2023, 231: 120495. 
[33] RAJAMANI R. Vehicle dynamics and control[M]. Berlin: Springer, 2012. 
[34] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167. 
[35] DUAN M, JIA J, ITO T. Fast terminal sliding mode control based on speed and disturbance estimation for an active suspension gravity compensation system[J]. Mechanism and Machine Theory, 2021, 155: 104073. 
[36] Stable-Baselines3:PPO [EB/OL]. [2024-07-16]. https:∥stable-baselines3. readthedocs. io/en/master/ modules/ppo.html#parameters.

相似文献/References:

[1]刘志强,张 晴.自适应时域参数 MPC 的智能车辆轨迹跟踪控制[J].郑州大学学报(工学版),2024,45(01):47.[doi:10.13705/j.issn.1671-6833.2023.04.005]
 LIU Zhiqiang,ZHANG Qing.Intelligent Vehicle Trajectory Tracking Control Based on Adaptive Time Domain Parameter MPC[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):47.[doi:10.13705/j.issn.1671-6833.2023.04.005]
[2]孙国安,赵 明,张廷丰,等.基于肌电预测模型的下肢外骨骼自适应控制方法[J].郑州大学学报(工学版),2025,46(03):34.[doi:10.13705/j.issn.1671-6833.2025.03.012]
 SUN Guoan,ZHAO Ming,ZHANG Tingfeng,et al.Adaptive Control Method of Lower Limb Exoskeleton Based on Myoelectric Prediction Model[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):34.[doi:10.13705/j.issn.1671-6833.2025.03.012]

更新日期/Last Update: 2025-05-22