CHEN Y H. Research on prediction algorithm of residual life of rolling bearing and development of monitoring software[D]. Harbin: Harbin Institute of Technology, 2020.
[2]刘洋, 李凌均, 王宇, 等. 基于FIF-CYCBD的滚动轴承故障特征提取方法研究[J]. 郑州大学学报(工学版), 2022, 43(4): 35-40.
LIU Y, LI L J, WANG Y, et al. Fault feature extraction method of rolling bearings based on FIF-CYCBD[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 35-40.
[3]WEN Y X, WU J G, YUAN Y. Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction[J]. IEEE Transactions on Reliability, 2017, 66(3): 924-938.
[4]WANG W B, ZHANG W J. Early defect identification: application of statistical process control methods[J]. Journal of Quality in Maintenance Engineering, 2008, 14 (3): 225-236.
[5]司小胜, 胡昌华. 数据驱动的设备剩余寿命预测理论及应用[M]. 北京: 国防工业出版社, 2016.
SI X S, HU C H. Data-driven remaining useful life prediction theory and applications for equipment[M]. Beijing: National Defense Industry Press, 2016.
[6]TSENG S T, TANG J, KU I H. Determination of burn-in parameters and residual life for highly reliable products [J]. Naval Research Logistics (NRL), 2003, 50(1): 1-14.
[7]PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455.
[8]LEE M Y, TANG J. A modified EM-algorithm for estimating the parameters of inverse Gaussian distribution based on time-censored Wiener degradation data[J]. Statistica Sinica, 2007,17(3):873.
[9]JOSEPH V R, YU I T. Reliability improvement experiments with degradation data[J]. IEEE Transactions on Reliability, 2006, 55(1): 149-157.
[10] GEBRAEEL N, LAWLEY M, LI R, et al. Residual-life distributions from component degradation signals: a Bayesian approach[J]. IIE Transactions, 2005, 37(6): 543-557.
[11]史华洁, 薛颂东. 退化数据驱动的设备剩余寿命在线预测[J]. 计算机工程与应用, 2016, 52(23): 249-254.
SHI H J, XUE S D. Degradation data driven online prediction for equipment residual life[J]. Computer Engineering and Applications, 2016, 52(23): 249-254.
[12]WANG Y, PENG Y Z, ZI Y Y, et al. A two-stage datadriven-based prognostic approach for bearing degradation problem[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924-932.
[13]黄子怡. 基于多退化阶段评估的滚动轴承剩余使用寿命预测方法[D]. 长沙: 中南大学, 2023.
HUANG Z Y. Prediction method of remaining service life of rolling bearing based on multi-degradation stage evaluation[D]. Changsha: Central South University, 2023.
[14] NG T S. An application of the EM algorithm to degradation modeling[J]. IEEE Transactions on Reliability, 2008, 57(1): 2-13.
[15]WANG P P, TANG Y C, BAE S J, et al. Bayesian analysis of two-phase degradation data based on change-point Wiener process[J]. Reliability Engineering & System Safety, 2018, 170: 244-256.
[16]董青, 郑建飞, 胡昌华, 等. 基于两阶段自适应Wiener过程的剩余寿命预测方法[J]. 自动化学报, 2022, 48(2): 539-553.
DONG Q, ZHENG J F, HU C H, et al. Remaining useful life prognostic method based on two-stage adaptive Wiener process[J]. Acta Automatica Sinica, 2022, 48 (2): 539-553.
[17] ARUNAN A, QIN Y, LI X L, et al. A change point detection integrated remaining useful life estimation model under variable operating conditions[J]. Control Engineering Practice, 2024, 144: 105840.
[18] ADAMS R P, MACKAY D J C. Bayesian online changepoint detection[EB/OL]. (2007-10-19)(2024-1009). http:/ /arxiv.org/pdf/0710.3742.
[19]张正新, 胡昌华, 高迎彬, 等. 多阶段随机退化设备剩余寿命预测方法[J]. 系统工程学报, 2017, 32 (1): 1-7.
ZHANG Z X, HU C H, GAO Y B, et al. A residual useful life prediction approach for equipments with multistate stochastic degradation[J]. Journal of Systems Engineering, 2017, 32(1): 1-7.
[20] ZHANG J X, HU C H, HE X, et al. A novel lifetime estimation method for two-phase degrading systems[J]. IEEE Transactions on Reliability, 2019, 68 (2): 689-709.
[21]胡昌华, 樊红东, 王兆强. 设备剩余寿命预测与最优维修决策[M]. 北京: 国防工业出版社, 2018.
HU C H, FAN H D, WANG Z Q. Residual life prediction and optimal maintenance decision for a piece of equipment[M]. Beijing: National Defense Industry Press, 2018.
[22]雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55 (16): 1-6.
LEI Y G, HAN T Y, WANG B, et al. XJTU-SY rolling element bearing accelerated life test datasets: a tutorial [J]. Journal of Mechanical Engineering, 2019, 55 (16): 1-6.