WAN H, OU Y Z, GUAN X L, et al. Review of the perception technologies for unmanned agricultural machinery operating environment [ J] . Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 ( 8) : 1 - 18.
[2] 陈虹, 宫洵, 胡云峰, 等. 汽车控制的研究现状与展 望[ J] . 自动化学报, 2013, 39(4) : 322-346.
CHEN H, GONG X, HU Y F, et al. Automotive control: the state of the art and perspective[ J] . Acta Automatica Sinica, 2013, 39(4) : 322-346.
[3] 丁幼春, 何志博, 夏中州, 等. 小型履带式油菜播种 机导航 免 疫 PID 控 制 器 设 计 [ J ] . 农 业 工 程 学 报, 2019, 35(7) : 12-20.
DING Y C, HE Z B, XIA Z Z, et al. Design of navigation immune controller of small crawler-type rape seeder [ J] . Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7) : 12-20.
[4] 白晓平, 胡静涛, 高雷, 等. 农机导航自校正模型控 制方法研究[ J] . 农业机械学报, 2015, 46(2) : 1-7.
BAI X P, HU J T, GAO L, et al. Self-tuning model control method for farm machine navigation[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2) : 1-7.
[5] 连世江, 陈军, 贾海政, 等. 基于 PID 控制的拖拉机 自动转向系统[ J] . 农机化研究, 2009, 31( 6) : 211- 213.
LIAN S J, CHEN J, JIA H Z, et al. Automatic turning control system of tractor based on PID control[ J] . Journal of Agricultural Mechanization Research, 2009, 31 (6) : 211-213.
[6] 黄沛琛, 罗锡文, 张智刚. 改进纯追踪模型的农业机 械地头转向控制方法[ J] . 计算机工程与应用, 2010, 46(21) : 216-219.
HUANG P C, LUO X W, ZHANG Z G. Control method of headland turning based on improved pure pursuit model for agricultural machine [ J] . Computer Engineering and Applications, 2010, 46(21) : 216-219.
[7] 唐小涛, 陶建峰, 李志腾, 等. 自动导航插秧机路径 跟踪系统稳定性模糊控制优化方法[ J] . 农业机械学 报, 2018, 49(1) : 29-34.
TANG X T, TAO J F, LI Z T, et al. Fuzzy control optimization method for stability of path tracking system of automatic transplanter[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1) : 29-34.
[8] 丁世宏, 姜月霞, 赵德安, 等. 输入饱和情况下农用 拖拉机的直线导航控制[ J] . 控制理论与应用, 2013, 30(10) : 1287-1293.
DING S H, JIANG Y X, ZHAO D A, et al. The straightline navigation control of an agricultural tractor subject to input saturation [ J ] . Control Theory & Applications, 2013, 30(10) : 1287-1293.
[9] 张华强, 王国栋, 吕云飞, 等. 基于改进纯追踪模型 的农机路径跟踪算法研究[ J] . 农业机械学报, 2020, 51(9) : 18-25.
ZHANG H Q, WANG G D, LYU Y F, et al. Agricultural machinery automatic navigation control system based on improved pure tracking model [ J ] . Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (9) : 18-25.
[10] 田涛涛, 侯忠生, 刘世达, 等. 基于无模型自适应控 制的无人驾驶汽车横向控制方法 [ J] . 自动化学报, 2017, 43(11) : 1931-1940.
TIAN T T, HOU Z S, LIU S D, et al. Model-free adaptive control based lateral control of self-driving car [ J] . Acta Automatica Sinica, 2017, 43(11) : 1931-1940.
[11] SIAMPIS E, VELENIS E, GARIUOLO S, et al. A realtime nonlinear model predictive control strategy for stabilization of an electric vehicle at the limits of handling[ J] . IEEE Transactions on Control Systems Technology, 2018, 26(6) : 1982-1994.
[12] TANG L Q, YAN F W, ZOU B, et al. An improved kinematic model predictive control for high-speed path tracking of autonomous vehicles [ J ] . IEEE Access, 2020, 8: 51400-51413.
[13] TAN Q F, WANG X, TAGHIA J, et al. Force control of two-wheel-steer four-wheel-drive vehicles using model predictive control and sequential quadratic programming for improved path tracking[J]. International Journal of Advanced Robotic Systems, 2017, 14(6): 172988141774629.
[14] 张宏岩, 王伟, 陈仕伟, 等. 基于全驱系统方法的制导 控制一体化设计[ J]. 航空学报, 2024, 45( 1): 137- 149.
ZHANG H Y, WANG W, CHEN S W, et al. Integrated guidance and control design based on fully actuated system method[ J] . Acta Aeronautica et Astronautica Sinica, 2024, 45(1) : 137-149.
[15] LI L, LIU Y H, WU Z L, et al. Controllability, stability and design for high-order fully actuated systems: special cases studies[C]∥2023 2nd Conference on Fully Actuated System Theory and Applications ( CFASTA) . Piscataway: IEEE, 2023: 851-856.
[16] 崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习 自动 驾 驶 轨 迹 预 测 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(5) : 53-61.
CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(5) : 53-61.
[17] 刘志强, 张晴. 自适应时域参数 MPC 的智能车辆轨 迹跟踪控制[ J] . 郑州大学学报( 工学版) , 2024, 45 (1) : 47-53.
LIU Z Q, ZHANG Q. Intelligent vehicle trajectory tracking control based on adaptive time domain parameter MPC [ J] . Journal of Zhengzhou University ( Engineering Science) , 2024, 45(1) : 47-53.
[18] 李革, 王宇, 郭刘粉, 等. 插秧机导航路径跟踪改进 纯追踪算法[ J] . 农业机械学报, 2018, 49( 5) : 21 - 26.
LI G, WANG Y, GUO L F, et al. Improved pure pursuit algorithm for rice transplanter path tracking[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5) : 21-26.
[19] ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach[ J] . IEEE Transactions on Robotics and Automation, 2004, 20(1) : 154- 160.
[20] 孟志军, 刘卉, 王华, 等. 农田作业机械路径优化方 法[ J] . 农业机械学报, 2012, 43(6) : 147-152.
MENG Z J, LIU H, WANG H, et al. Optimal path planning for agricultural machinery [ J] . Transactions of the Chinese Society for Agricultural Machinery, 2012, 43 (6) : 147-152.
[21] 丁晨, 魏新华, 梅珂琪. 农用拖拉机的自适应二阶滑 模路 径 跟 踪 控 制 [ J] . 控 制 理 论 与 应 用, 2023, 40 (7) : 1287-1295.
DING C, WEI X H, MEI K Q. Adaptive second-order sliding mode path tracking control for agricultural tractors [ J] . Control Theory & Applications, 2023, 40 ( 7 ) : 1287-1295.
[22] DUAN G R. High-order fully actuated system approaches: part Ⅰ. Models and basic procedure[ J] . International Journal of Systems Science, 2021, 52 ( 2) : 422 - 435.
[23] DUAN G R. High-order fully actuated system approaches: part Ⅱ. Generalized strict-feedback systems [ J] . International Journal of Systems Science, 2021, 52( 3) : 437-454.
[24] DUAN G R. High-order fully actuated system approaches: part Ⅲ. Robust control and high-order backstepping[ J] . International Journal of Systems Science, 2021, 52(5) : 952-971.
[25] DUAN G R. High-order fully actuated system approaches: part Ⅳ. Adaptive control and high-order backstepping[ J] . International Journal of Systems Science, 2021, 52(5) : 972-989.