[1]吴振龙,李 林,刘艳红.基于全驱控制方法的农机路径跟踪控制[J].郑州大学学报(工学版),2025,46(04):24-31.[doi:10.13705/j.issn.1671-6833.2025.04.019]
 WU Zhenlong,LI Lin,LIU Yanhong.Path Tracking of Agricultural Machinery Based on Fully Actuated Control Approaches[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):24-31.[doi:10.13705/j.issn.1671-6833.2025.04.019]
点击复制

基于全驱控制方法的农机路径跟踪控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
24-31
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Path Tracking of Agricultural Machinery Based on Fully Actuated Control Approaches
文章编号:
1671-6833(2025)04-0024-08
作者:
吴振龙12 李 林1 刘艳红1
1. 郑州大学 电气与信息工程学院,河南 郑州 450001;2. 智能农业动力装备全国重点实验室,河南 洛阳 471039
Author(s):
WU Zhenlong12 LI Lin1 LIU Yanhong1
1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471039, China
关键词:
扰动影响 控制精度 全驱控制 鲁棒性 路径跟踪
Keywords:
perturbation effects control accuracy fully actuated control robustness path tracking
分类号:
TK262
DOI:
10.13705/j.issn.1671-6833.2025.04.019
文献标志码:
A
摘要:
针对在未知扰动的影响下农机车辆对参考路径的跟踪精度不高,不能较好满足各种作业环境下生产需求的问题,以农田作业中最常见的前轮转向、后轮驱动的轮式农机车辆为对象,研究了全驱控制方法下农机车辆的跟踪控制问题。 采用广泛应用的比例积分微分( PID)控制、自抗扰控制作为对比控制器,在不同实验环境下与所提控制方法下所设计的控制器进行对比仿真。 结果表明:相比于另外两种控制方法,所提出的控制方法在不同的实验条件下都能更加稳定地对参考路径进行跟踪,且具有较高的控制精度与鲁棒性。
Abstract:
In order to solve the problem that the tracking accuracy of agricultural machinery vehicles on the reference path was not easily influenced by unknown disturbances and could not meet needs of various operating environments, the most common front-wheel steering and rear-wheel driven wheeled agricultural machinery vehicles infarmland operation was taken as the object, and the tracking control problem of agricultural machinery vehicles withthe fully actuated control approaches was studied. The widely used proportional-integral-derivative ( PID) controland active disturbance rejection control were used as comparison controllers. And the controllers designed with theproposed control method were compared and simulated in different experimental environments. The results showedthat, compared with the other two methods, the proposed method performed better in tracking the reference path,more stable in different experimental conditions, and with higher control accuracy and robustness.

参考文献/References:

[1] 万欢, 欧媛珍, 管宪鲁, 等. 无人农机作业环境感知 技术综述[ J] . 农业工程学报, 2024, 40(8) : 1-18. 

WAN H, OU Y Z, GUAN X L, et al. Review of the perception technologies for unmanned agricultural machinery operating environment [ J] . Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 ( 8) : 1 - 18. 
[2] 陈虹, 宫洵, 胡云峰, 等. 汽车控制的研究现状与展 望[ J] . 自动化学报, 2013, 39(4) : 322-346. 
CHEN H, GONG X, HU Y F, et al. Automotive control: the state of the art and perspective[ J] . Acta Automatica Sinica, 2013, 39(4) : 322-346. 
[3] 丁幼春, 何志博, 夏中州, 等. 小型履带式油菜播种 机导航 免 疫 PID 控 制 器 设 计 [ J ] . 农 业 工 程 学 报, 2019, 35(7) : 12-20. 
DING Y C, HE Z B, XIA Z Z, et al. Design of navigation immune controller of small crawler-type rape seeder [ J] . Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7) : 12-20. 
[4] 白晓平, 胡静涛, 高雷, 等. 农机导航自校正模型控 制方法研究[ J] . 农业机械学报, 2015, 46(2) : 1-7. 
BAI X P, HU J T, GAO L, et al. Self-tuning model control method for farm machine navigation[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2) : 1-7. 
[5] 连世江, 陈军, 贾海政, 等. 基于 PID 控制的拖拉机 自动转向系统[ J] . 农机化研究, 2009, 31( 6) : 211- 213. 
LIAN S J, CHEN J, JIA H Z, et al. Automatic turning control system of tractor based on PID control[ J] . Journal of Agricultural Mechanization Research, 2009, 31 (6) : 211-213. 
[6] 黄沛琛, 罗锡文, 张智刚. 改进纯追踪模型的农业机 械地头转向控制方法[ J] . 计算机工程与应用, 2010, 46(21) : 216-219. 
HUANG P C, LUO X W, ZHANG Z G. Control method of headland turning based on improved pure pursuit model for agricultural machine [ J] . Computer Engineering and Applications, 2010, 46(21) : 216-219. 
[7] 唐小涛, 陶建峰, 李志腾, 等. 自动导航插秧机路径 跟踪系统稳定性模糊控制优化方法[ J] . 农业机械学 报, 2018, 49(1) : 29-34. 
TANG X T, TAO J F, LI Z T, et al. Fuzzy control optimization method for stability of path tracking system of automatic transplanter[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1) : 29-34. 
[8] 丁世宏, 姜月霞, 赵德安, 等. 输入饱和情况下农用 拖拉机的直线导航控制[ J] . 控制理论与应用, 2013, 30(10) : 1287-1293. 
DING S H, JIANG Y X, ZHAO D A, et al. The straightline navigation control of an agricultural tractor subject to input saturation [ J ] . Control Theory & Applications, 2013, 30(10) : 1287-1293. 
[9] 张华强, 王国栋, 吕云飞, 等. 基于改进纯追踪模型 的农机路径跟踪算法研究[ J] . 农业机械学报, 2020, 51(9) : 18-25. 
ZHANG H Q, WANG G D, LYU Y F, et al. Agricultural machinery automatic navigation control system based on improved pure tracking model [ J ] . Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (9) : 18-25. 
[10] 田涛涛, 侯忠生, 刘世达, 等. 基于无模型自适应控 制的无人驾驶汽车横向控制方法 [ J] . 自动化学报, 2017, 43(11) : 1931-1940. 
TIAN T T, HOU Z S, LIU S D, et al. Model-free adaptive control based lateral control of self-driving car [ J] . Acta Automatica Sinica, 2017, 43(11) : 1931-1940. 
[11] SIAMPIS E, VELENIS E, GARIUOLO S, et al. A realtime nonlinear model predictive control strategy for stabilization of an electric vehicle at the limits of handling[ J] . IEEE Transactions on Control Systems Technology, 2018, 26(6) : 1982-1994. 
[12] TANG L Q, YAN F W, ZOU B, et al. An improved kinematic model predictive control for high-speed path tracking of autonomous vehicles [ J ] . IEEE Access, 2020, 8: 51400-51413. 
[13] TAN Q F, WANG X, TAGHIA J, et al. Force control of two-wheel-steer four-wheel-drive vehicles using model predictive control and sequential quadratic programming for improved path tracking[J]. International Journal of Advanced Robotic Systems, 2017, 14(6): 172988141774629. 
[14] 张宏岩, 王伟, 陈仕伟, 等. 基于全驱系统方法的制导 控制一体化设计[ J]. 航空学报, 2024, 45( 1): 137- 149. 
ZHANG H Y, WANG W, CHEN S W, et al. Integrated guidance and control design based on fully actuated system method[ J] . Acta Aeronautica et Astronautica Sinica, 2024, 45(1) : 137-149. 
[15] LI L, LIU Y H, WU Z L, et al. Controllability, stability and design for high-order fully actuated systems: special cases studies[C]∥2023 2nd Conference on Fully Actuated System Theory and Applications ( CFASTA) . Piscataway: IEEE, 2023: 851-856. 
[16] 崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习 自动 驾 驶 轨 迹 预 测 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(5) : 53-61. 
CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(5) : 53-61. 
[17] 刘志强, 张晴. 自适应时域参数 MPC 的智能车辆轨 迹跟踪控制[ J] . 郑州大学学报( 工学版) , 2024, 45 (1) : 47-53. 
LIU Z Q, ZHANG Q. Intelligent vehicle trajectory tracking control based on adaptive time domain parameter MPC [ J] . Journal of Zhengzhou University ( Engineering Science) , 2024, 45(1) : 47-53. 
[18] 李革, 王宇, 郭刘粉, 等. 插秧机导航路径跟踪改进 纯追踪算法[ J] . 农业机械学报, 2018, 49( 5) : 21 - 26. 
LI G, WANG Y, GUO L F, et al. Improved pure pursuit algorithm for rice transplanter path tracking[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5) : 21-26. 
[19] ASTOLFI A, BOLZERN P, LOCATELLI A. Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach[ J] . IEEE Transactions on Robotics and Automation, 2004, 20(1) : 154- 160. 
[20] 孟志军, 刘卉, 王华, 等. 农田作业机械路径优化方 法[ J] . 农业机械学报, 2012, 43(6) : 147-152. 
MENG Z J, LIU H, WANG H, et al. Optimal path planning for agricultural machinery [ J] . Transactions of the Chinese Society for Agricultural Machinery, 2012, 43 (6) : 147-152. 
[21] 丁晨, 魏新华, 梅珂琪. 农用拖拉机的自适应二阶滑 模路 径 跟 踪 控 制 [ J] . 控 制 理 论 与 应 用, 2023, 40 (7) : 1287-1295. 
DING C, WEI X H, MEI K Q. Adaptive second-order sliding mode path tracking control for agricultural tractors [ J] . Control Theory & Applications, 2023, 40 ( 7 ) : 1287-1295. 
[22] DUAN G R. High-order fully actuated system approaches: part Ⅰ. Models and basic procedure[ J] . International Journal of Systems Science, 2021, 52 ( 2) : 422 - 435. 
[23] DUAN G R. High-order fully actuated system approaches: part Ⅱ. Generalized strict-feedback systems [ J] . International Journal of Systems Science, 2021, 52( 3) : 437-454. 
[24] DUAN G R. High-order fully actuated system approaches: part Ⅲ. Robust control and high-order backstepping[ J] . International Journal of Systems Science, 2021, 52(5) : 952-971. 
[25] DUAN G R. High-order fully actuated system approaches: part Ⅳ. Adaptive control and high-order backstepping[ J] . International Journal of Systems Science, 2021, 52(5) : 972-989.

更新日期/Last Update: 2025-07-12