[1]GONZALEZ A, GARCIA L, KILBY J, et al. Robotic devices for paediatric rehabilitation: a review of design features[J]. Biomedical Engineering Online, 2021, 20 (1): 89. [2]ZHOU B, WANG H, HU F, et al. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning[J]. Computer Methods and Programs in Biomedicine, 2020, 193: 105486.
[3]XIONG D Z, ZHANG D H, ZHAO X G, et al. Synergybased neural interface for human gait tracking with deep learning[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2271-2280.
[4]FLEISCHER C, WEGE A, KONDAK K, et al. Application of EMG signals for controlling exoskeleton robots[J]. Biomedizinische Technik Biomedical Engineering, 2006, 51(5/6): 314-319.
[5]SUZUKI K, MITO G, KAWAMOTO H, et al. Intentionbased walking support for paraplegia patients with robot suit HAL[J]. Advanced Robotics, 2007, 21(12): 1441-1469.
[6]FAN Y J, YIN Y H. Active and progressive exoskeleton rehabilitation using multisource information fusion from EMG and force-position EPP[J]. IEEE Transactions on Bio-medical Engineering, 2013, 60(12): 3314-3321.
[7]张弼, 姚杰, 赵新刚, 等. 一种基于肌电信号的自适应人机交互控制方法[J]. 控制理论与应用, 2020, 37 (12): 2560-2570.
ZHANG B, YAO J, ZHAO X G, et al. An adaptive human-robot interaction control method based on electromyography signals[J]. Control Theory & Applications, 2020, 37(12): 2560-2570.
[8]赵佳伟, 朱立忠, 陈万鑫, 等. 基于动态运动基元的6自由度下肢外骨骼步态轨迹规划与控制策略[J]. 信息与控制, 2024, 53(1): 33-46.
ZHAO J W, ZHU L Z, CHEN W X, et al. Gait trajectory planning and control strategy of 6-DOF lower limb exoskeleton based on dynamic movement primitives[J]. Information and Control, 2024, 53(1): 33-46.
[9]高建设, 刘陆骐, 王杰, 等. 基于模糊控制的上肢康复机器人变导纳控制[J]. 郑州大学学报(工学版), 2024, 45(1): 12-20.
GAO J S, LIU L Q, WANG J, et al. Variable admittance control of upper limb rehabilitation robot based on fuzzy control[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(1): 12-20.
[10] LIU J M, ZHANG Y P, WANG J H, et al. Adaptive sliding mode control for a lower-limb exoskeleton rehabilitation robot[C]∥The 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway: IEEE, 2018: 1481-1486.
[11] RAHMAN M H, KITTEL-OUIMET T, SAAD M, et al. Development and control of a robotic exoskeleton for shoulder, elbow and forearm movement assistance[J]. Applied Bionics and Biomechanics, 2012, 9(3): 275-292.
[12] LI X, ZHANG X, LI X, et al. BEAR-H: an intelligent bilateral exoskeletal assistive robot for smart rehabilitation [J]. IEEE Robotics & Automation Magazine, 2022, 29 (3): 34-46.
[13]魏浩, 张道辉, 谷亚伦, 等. 基于织物的柔性可穿戴上肢运动辅助系统设计[J]. 机器人, 2024, 46(6): 692-702, 712.
WEI H, ZHANG D H, GU Y L, et al. Design of a fabric-based soft wearable upper-limb motion assistive system [J]. Robot, 2024, 46(6): 692-702, 712.
[14] LIU G, ZHANG L, HAN B, et al. sEMG-based continuous estimation of knee joint angle using deep learning with convolutional neural network[C]∥2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Piscataway: IEEE, 2019: 140-145.
[15]WANG C, GUO W Y, ZHANG H, et al. sEMG-based continuous estimation of grasp movements by long-short term memory network[J]. Biomedical Signal Processing and Control, 2020, 59: 101774.
[16]张安琳, 张启坤, 黄道颖, 等. 基于CNN与BiGRU融合神经网络的入侵检测模型[J]. 郑州大学学报(工学版), 2022, 43(3): 37-43.
ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intrusion detection model based on CNN and BiGRU fused neural network[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 37-43.
[17]吴振龙, 莫艺鹏, 王荣花, 等. 基于LSTM和粒子群算法的多机组风电功率预测[J]. 郑州大学学报(工学版), 2024, 45(6): 114-121.
WU Z L, MO Y P, WANG R H, et al. Multi-unit wind power prediction based on long short-term memory and particle swarm optimization[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(6): 114-121.
[18] HAN J D, DING Q C, XIONG A B, et al. A state-space EMG model for the estimation of continuous joint movements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4267-4275.
[19] ZHONG W J, FU X M, ZHANG M M. A muscle synergy-driven ANFIS approach to predict continuous knee joint movement[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(6): 1553-1563.
[20] SU J H, CHENG T, TAN X W, et al. A recurrent neural network based prediction method for continuous joint angle movement[C]∥2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway:IEEE, 2023: 521-526.