[1]李晓媛,任立庆,刘登辉,等.鸽子 MVL 核团对视频迁移实物目标识别的神经表征[J].郑州大学学报(工学版),2025,46(04):1-7.[doi:10.13705/j.issn.1671-6833.2025.04.015]
 LI Xiaoyuan,REN Liqing,et al.Neural Representation of Pigeon MVL Nucleus in Video-to-Real-World Recognition[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):1-7.[doi:10.13705/j.issn.1671-6833.2025.04.015]
点击复制

鸽子 MVL 核团对视频迁移实物目标识别的神经表征()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
1-7
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Neural Representation of Pigeon MVL Nucleus in Video-to-Real-World Recognition
文章编号:
1671-6833(2025)04-0001-07
作者:
李晓媛12 任立庆1 刘登辉13 李 贺1 程 涵24
1. 郑州大学 电气与信息工程学院,河南 郑州 450001;2. 河南省脑科学与脑机接口技术重点实验室,河南 郑州450001;3. 郑州警察学院 刑事科学技术系,河南 郑州 450053;4. 郑州大学 生命科学学院,河南 郑州 450001
Author(s):
LI Xiaoyuan1 2 REN Liqing1 LIU Denghui1 3 LI He1 CHENG Han24
1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou 450001, China; 3. Department of Criminal Science and Technology, Zhengzhou Police College, Zhengzhou 450053, China; 4. School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
关键词:
视频学习 视觉认知迁移学习 MVL 核团 锁相值 脑功能网络
Keywords:
video learning visual cognitive transfer learning MVL nucleus phase-locking value brain functional network
分类号:
Q424R318. 04
DOI:
10.13705/j.issn.1671-6833.2025.04.015
文献标志码:
A
摘要:
为探究鸽子基于视频学习迁移实物目标识别的神经机制,设计了目标导向式训练系统。 首先,通过行为学对比发现,经视频训练的鸽子在实物迁移测试中正确率显著高于对照组,验证了鸽子具有视觉认知迁移能力。 其次,利用微电极记录鸽子 MVL 核团的神经信号,基于 Welch 功率谱分析得到视觉识别任务的特征响应频带,并通过锁相值构建脑功能网络。 结果表明:在视频和实物识别中,目标与干扰状态下的脑网络平均节点度、聚类系数和全局效率均存在显著差异;但视频目标与实物目标,视频干扰与实物干扰的网络特征无差异,这表明 MVL 核团通过提取视频与实物的共有特征实现跨模式迁移,揭示了 MVL 脑区在视觉认知迁移学习中的关键作用。
Abstract:
This study designed a goal-directed training system to conduct video learning and ob<x>ject transfer tests on pigeons. The behavioral experiments consisted of three phases: pigeon screening and adaptation, video learning, and ob<x>ject transfer testing. Electrodes were then implanted in the MVL nucleus to record neural signals during the recognition of video and ob<x>ject targets. The power spectrum before and after target recognition was calculated using the Welch method, identifying the characteristic frequency bands associated with target recognition in the pigeons MVL brain region. Finally, a brain functional network was constructed ba<x>sed on phase-locking value (PLV), and features such as average node degree, clustering coefficient, and global efficiency were extracted. The behavioral results showed that video learning significantly improved the pigeons ability to recognize ob<x>jects, confirming the brains capability for transfer learning in visual cognition. The analysis of brain functional network features in the MVL nucleus during visual target recognition suggested that it plays a crucial role in both visual target recognition and visual transfer learning. The MVL, as a higher-order visual nucleus, may extract common features between video and physical ob<x>jects in visual target recognition.

参考文献/References:

[1] 罗四维. 视觉信息认知计算理论[ M] . 北京: 科学出 版社, 2010. 

LUO S W. The perception computing of visual information [M] . Beijing: Science Press, 2010. 
[2] BERG M E, GRACE R C. Categorization of multidimensional stimuli by pigeons[ J] . Journal of the Experimental Analysis of Behavior, 2011, 95(3) : 305-326. 
[3] HERRNSTEIN R J, LOVELAND D H. Complex visual concept in the pigeon[ J] . Science, 1964, 146( 3643) : 549-551. 
[4] WATANABE S. Object-picture equivalence in the pigeon: an analysis with natural concept and pseudoconcept discriminations [ J ] . Behavioural Processes, 1993, 30 (3) : 225-231. 
[5] SPETCH M L, FRIEDMAN A. Comparative cognition of object recognition[ J] . Comparative Cognition & Behavior Reviews, 2006, 1:12-35. 
[6] WATANABE S, FURUYA I. Video display for study of avian visual cognition: from psychophysics to sign language[ J] . International Journal of Comparative Psychology, 1997, 10(3) : 111-127. 
[7] QADRI M A J, COOK R G. Pigeons and humans use action and pose information to categorize complex human behaviors[ J] . Vision Research, 2017, 131: 16-25. 
[8] GUILLETTE L M, HEALY S D. Social learning in nestbuilding birds watching live-streaming video demonstrators [ J] . Integrative Zoology, 2019, 14(2) : 204-213. 
[9] AZIZI A H, PUSCH R, KOENEN C, et al. Emerging category representation in the visual forebrain hierarchy of pigeons ( Columba livia ) [ J ] . Behavioural Brain Research, 2019, 356: 423-434. 
[10] CLARK W J, PORTER B, COLOMBO M. Searching for face-category representation in the avian visual forebrain [ J] . Frontiers in Physiology, 2019, 10: 140. 
[11] GÜNTÜRKÜN O, KOENEN C, IOVINE F, et al. The neuroscience of perceptual categorization in pigeons: a mechanistic hypothesis[ J] . Learning & Behavior, 2018, 46(3) : 229-241. 
[12] STACHO M, STRÖCKENS F, XIAO Q, et al. Functional organization of telencephalic visual association fields in pigeons[ J]. Behavioural Brain Research, 2016, 303: 93- 102. 
[13] ANDERSON C, PARRA R S, CHAPMAN H, et al. Pigeon nidopallium caudolaterale, entopallium, and mesopallium ventrolaterale neural responses during categorisation of Monet and Picasso paintings [ J ] . Scientific Reports, 2020, 10(1) : 15971.
[14] CLARK W, CHILCOTT M, COLOMBO M. The effect ofprogressive image scrambling on neuronal responses atthree stations of the pigeon tectofugal pathway[ J] . Scientific Reports, 2022, 12(1) : 14190.
[15] LIU X Y, WAN H, LI S, et al. Adaptive common average reference for in vivo multichannel local field potentials[ J] . Biomedical Engineering Letters, 2017, 7( 1) : 7 -15.
[16] WANG Z M, LI S, ZHANG J, et al. Emotion recognitionbased on phase-locking value brain functional network andtopological data analysis[ J] . Neural Computing and Applications, 2024, 36(14) : 7903-7922.
[17] 宾光宇, 张雅静, 高小榕. 相位同步方法用于稳态视觉诱发 电 位 的 测 量 [ J] . 清 华 大 学 学 报 ( 自 然 科 学版) , 2008, 48(9) : 1507-1510.
BIN G Y, ZHANG Y J, GAO X R. Steady state visual evoked potential measurement using a phase-locking method [ J ] . Journal of Tsinghua University ( Science andTechnology) , 2008, 48(9) : 1507-1510.
[18] WU X, ZHENG W L, LI Z Y, et al. Investigating EEGbased functional connectivity patterns for multimodal emotion recognition [ J ] . Journal of Neural Engineering,2022, 19(1) : 016012.
[19] 秦红娜, 王思佳, 肖晓啸, 等. 精神分裂症患者与健康人不同空间尺度下脑功能网络小世界拓扑属性的比较研究[ J] . 放射学实践, 2023, 38(7) : 835-840.
QIN H N, WANG S J, XIAO X X, et al. A comparativestudy of small-world topological properties of brain functional networks at different spatial scales in patients withschizophrenia and healthy people [ J ] . Radiologic Practice, 2023, 38(7) : 835-840.
[20] CHEN N H, CAI P, ZHOU T G, et al. Perceptual learning modifies the functional specializations of visual cortical areas [ J] . Proceedings of the National Academy ofSciences of the United States of America, 2016, 113(20) : 5724-5729.

更新日期/Last Update: 2025-07-12