[1]刘中常,李国良.基于群体智能优化算法的移动机器人分组聚集方法[J].郑州大学学报(工学版),2025,46(02):35-42.[doi:10.13705/j.issn.1671-6833.2025.02.021]
 LIU Zhongchang,LI Guoliang.Group Aggregation Method of Mobile Robots Based on Swarm Intelligence Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):35-42.[doi:10.13705/j.issn.1671-6833.2025.02.021]
点击复制

基于群体智能优化算法的移动机器人分组聚集方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
35-42
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Group Aggregation Method of Mobile Robots Based on Swarm Intelligence Optimization Algorithm
文章编号:
1671-6833(2025)02-0035-08
作者:
刘中常 李国良
大连海事大学 船舶电气工程学院,辽宁 大连 116026
Author(s):
LIU Zhongchang LI Guoliang
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
关键词:
移动机器人集群 导航方法 分组聚集 灰狼优化算法 有限感知
Keywords:
mobile robot swarm navigation method group aggregation GWO algorithm limited sensing range
分类号:
TP242TP273
DOI:
10.13705/j.issn.1671-6833.2025.02.021
文献标志码:
A
摘要:
为了应对多个混合移动机器人集群在进行分组聚集时速度慢、成功率低等问题,设计了一种基于群体智能优化算法的分散式的分组聚集导航方法,使得每个机器人只利用有限感知范围内其他机器人的信息,结合灰狼优化(GWO)算法的原理来计算其与同组其他机器人进行聚集的首选导航速度。在确定每个机器人可利用的局部信息时,根据各组机器人的信息共享意愿,分为不同组之间相互合作和相互独立两种情况分别进行设计,从而实现了对原始的集中式GWO算法的分散化处理与应用。进一步对原始GWO算法进行改进,通过采用非线性收敛因子来提高机器人的前期探索能力,从而增大与同组成员的相遇概率,最终提高分组聚集的成功率。为了避免移动过程中机器人之间发生相互碰撞,利用分散式的最优互惠避碰(ORCA)算法对每个机器人的首选导航速度进行修正。仿真结果显示了所设计的不同分组聚集导航算法的有效性,并且相较于现有的基于粒子群优化(PSO)算法的分组聚集方法,所设计的各算法均具有更高的成功率、更快的收敛速度及更强的稳定性。
Abstract:
To cope with the issues of low convergence speed and low success rate in the realization of segregating multiple coupled subgroups, a swarm intelligence optimization inspired method was proposed to provide a decentralized navigation method for the robots. The designed navigation algorithm enabled each robot to utilize information of the other robots within a limited sensing range, and calculated the preferred navigation speed for its aggregation with other robots of the same subgroup by following principles of the grey wolf optimization (GWO) algorithm. Based on the inclination of information sharing among different subgroups, the applicable information for each robot was determined separately for the cases of being cooperative or being independent among different subgroups, so that the original centralized GWO algorithm could be applied in a decentralized manner. Furthermore, the original GWO algorithm was improved by using a nonlinearly convergence factor which could improved the exploration ability of the robots. In this way, the chance of encountering with group members for each robot was increased, and eventually improved the success rate of group aggregation. In order to avoid collisions between robots during the moving process, in this study the decentralized optimal reciprocal collision avoidance (ORCA) algorithm was used to adjust the preferred navigation speed of each robot. Simulation results demonstrated the effectiveness of the designed group aggregation navigation algorithm, showing higher success rates, faster convergence speed, and greater stability compared to an existing particle swarm optimization (PSO) algorithm-based method.

参考文献/References:

[1]SHORINWA O, HALSTED T, YU J, et al. Distributed optimization methods for multi-robot systems: part 2—a survey[J]. IEEE Robotics & Automation Magazine, 2024, 31(3): 154-169. 

[2]张方方, 张文丽, 王婷婷. 基于速度补偿算法的多机器人编队控制研究[J]. 郑州大学学报(工学版), 2022, 43(2): 1-6, 14. 
ZHANG F F, ZHANG W L, WANG T T. Research on multi-robot formation control based on speed compensation algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(2): 1-6, 14. 
[3]AN X, WU C, LIN Y F, et al. Multi-robot systems and cooperative object transport: communications, platforms, and challenges[J]. IEEE Open Journal of the Computer Society, 2023, 4: 23-36. 
[4]QUERALTA J P, TAIPALMAA J, CAN PULLINEN B, et al. Collaborative multi-robot search and rescue: planning, coordination, perception, and active vision[J]. IEEE Access, 2020, 8: 191617-191643. 
[5]DUBEY R, GUPTA S, CHAUDHARY S, et al. Finitetime convergence of multi-robot segregation using MPC with aperiodic motion smoothing[C]∥2024 IEEE 20th International Conference on Automation Science and Engineering (CASE). Piscataway: IEEE, 2024: 2209-2214. 
[6]FERREIRA FILHO E B, PIMENTA L C A. Segregation of heterogeneous swarms of robots in curves[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 7173-7179. 
[7]郝肇铁, 郭斌, 赵凯星, 等. 从规则驱动到群智涌现: 多机器人空地协同研究综述[J]. 自动化学报, 2024, 50(10): 1877-1905. 
HAO Z T, GUO B, ZHAO K X, et al. From rule-driven to collective intelligence emergence: a review of research on multi-robot air-ground collaboration[J]. Acta Automatica Sinica, 2024, 50(10): 1877-1905. 
[8]侯岳奇, 陶浩, 龚俊斌, 等. 多约束条件下无人艇和无人机集群协同航迹规划[J]. 中国舰船研究, 2021, 16(1): 74-82. 
HOU Y Q, TAO H, GONG J B, et al. Cooperative path planning of USV and UAV swarms under multiple constraints[J]. Chinese Journal of Ship Research, 2021, 16 (1): 74-82. 
[9]KUMAR M, GARG D P, KUMAR V. Segregation of heterogeneous units in a swarm of robotic agents[J]. IEEE Transactions on Automatic Control, 2010, 55(3): 743-748. 
[10] SANTOS V G, PIRES A G, ALITAPPEH R J, et al. Spatial segregative behaviors in robotic swarms using differential potentials[J]. Swarm Intelligence, 2020, 14 (4): 259-284. 
[11] FILHO E B F, PIMENTA L C A. Segregating multiple groups of heterogeneous units in robot swarms using abstractions[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2015: 401-406. 
[12] FERREIRA-FILHO E B, PIMENTA L C A. Abstraction based approach for segregation in heterogeneous robotic swarms[J]. Robotics and Autonomous Systems, 2019, 122: 103295. 
[13] OMOTUYI O, KUMAR M. Learning decentralized controllers for segregation of heterogeneous robot swarms with graph neural networks[C]∥2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). Piscataway: IEEE, 2022: 1-6. 
[14] LIU Z C, WONG W S. Group consensus of linear multiagent systems under nonnegative directed graphs[J]. IEEE Transactions on Automatic Control, 2022, 67(11): 6098-6105. 
[15] HASSAN K, TAHIR F, REHAN M, et al. On relativeoutput feedback approach for group consensus of clusters of multiagent systems[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 55-66. 
[16] LEI W Y, LIU Z C, LIU J H. Flocking control for multiple subgroups based on multi-hop communication and connectivity maintenance strategies[C]∥The 14th Asian Control Conference (ASCC). Piscataway: IEEE, 2024: 2248-2253. 
[17] GROSS R, MAGNENAT S, MONDADA F. Segregation in swarms of mobile robots based on the Brazil nut effect[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2009: 4349-4356. 
[18] CHEN J, GAUCI M, PRICE M J, et al. Segregation in swarms of e-puck robots based on the Brazil nut effect[C]∥ Proceedings of the 11th International Conference on Autonomous Agents and Multi-Agent Systems. Piscataway: IEEE, 2012: 163-170. 
[19] JOSHI D, SHIMIZU M, HOSODA K. Segregation and flow of modules in a robot swarm utilising the Brazil nut effect[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2019: 4080-4085. 
[20] REZECK P, ASSUNÇÃO R M, CHAIMOWICZ L. Flocking-segregative swarming behaviors using Gibbs random fields[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 8757-8763. 
[21] INÁCIO F R, MACHARET D G, CHAIMOWICZ L. PSO-based strategy for the segregation of heterogeneous robotic swarms[J]. Journal of Computational Science, 2019, 31: 86-94. 
[22] MIRJALILI S, MIRJALILI S, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 
[23] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[C]∥The 14th International Symposium ISRR. Berlin: Springer, 2011: 3-19. 
[24]甘福宝, 王仲阳, 连寅行, 等. 基于改进灰狼优化算法的移动机器人路径规划方法[J]. 传感器与微系统, 2024, 43(8): 110-113. 
GAN F B, WANG Z Y, LIAN Y H, et al. Path planning method of mobile robot based on improved grey wolf optimization algorithm[J]. Transducer and Microsystem Technologies, 2024, 43(8): 110-113. 
[25]张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38. 
ZHANG X F, WANG X Y. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46(3): 30-38.

更新日期/Last Update: 2025-03-13