参考文献/References:
[1] 宋健, 黄建军. 建筑工人安全参与行为演化博弈分析 [J]. 安全, 2021, 42(10): 62-67.
SONG J, HUANG J J. Evolutionary game analysis on safety participation behavior of construction workers [J]. Safety & Security, 2021, 42(10): 62-67.
[2] 张震, 王晓杰, 晋志华, 等. 基于轻量化YOLOv5的交通标志检测 [J]. 郑州大学学报(工学版), 2024, 45(2): 12-19.
ZHANG Z, WANG X J, JIN Z H, et al. Traffic sign detection based on lightweight YOLOv5 [J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 12-19.
[3] GIRSHICK R. Fast R-CNN [C]// 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2015: 1440-1448.
[4] DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks [EB/OL]. (2016-05-20) [2024-11-22]. https://doi.org/10.48550/arXiv.1605.06409
[5] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2980-2988.
[6] Ultralytics. YOLOv5 [EB/OL]. (2020-05-18) [2024-04-22]. https://github.com/ultralytics/yolov5.
[7] LI C Y, LI L L, GENG Y F, et al. Yolov6 v3. 0: a full-scale reloading [EB/OL]. (2023-01-13) [2024-04-22]. https://arxiv.org/abs/2301.05586.
[8] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475.
[9] Ultralytics. YOLOv8 [EB/OL]. (2023-01-10) [2024-11-22]. https://github.com/ultralytics/ultralytics.
[10] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information [EB/OL]. (2024-2-21) [2024-04-22]. https://arxiv.org/abs/2402.13616v2.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[12] LAW H, DENG J. CornerNet: detecting objects as paired keypoints [EB/OL]. (2024-2-21) [2024-11-22]. https://doi.org/10.48550/arXiv.1808.01244.
[13] ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 9259-9266.
[14] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning [C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2023: 1-5.
[15] YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector [J]. Pattern Recognition, 2022, 155: 110714.
[16] ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale [EB/OL]. (2023-12-29) [2024-11-22]. https://arxiv.org/abs/2312.17663.
[17] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection [C]//European Conference on Computer Vision. Cham: Springer, 2018: 816-832.
[18] MA W B, GUAN Z, WANG X, et al. Light-YOLO-FL: a target detection algorithm for reflective clothing wearing inspection [J]. Displays, 2023, 80: 102561.
[19] 赵红成, 田秀霞, 杨泽森, 等. YOLO-S: 一种新型轻量化的安全帽佩戴检测模型 [J]. 华东师范大学学报(自然科学版), 2021(5): 134-145.
ZHAO H C, TIAN X X, YANG Z S, et al. YOLO-S: a new lightweight helmet wearing detection model [J]. Journal of East China Normal University (Natural Science), 2021(5): 134-145.
[20] WANG L L, ZHANG X J, YANG H L. Safety helmet wearing detection model based on improved YOLO-M [J]. IEEE Access, 2023, 11: 26247-26257.
[21] PENG J, PENG F, JIN S Z, et al. Research on safety helmet wearing detection based on YOLO [C]//ECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2023: 1-6.
[22] MA X J, JI K F, XIONG B L, et al. Light-YOLOv4: an edge-device oriented target detection method for remote sensing images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10808-10820.
[23] LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions [EB/OL]. (2021-12-10) [2024-11-22]. 2021: 2112.05561. https://arxiv.org/abs/2112.05561v1.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[25] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 11531-11539.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-7-11) [2024-11-22]. https://doi.org/10.48550/arXiv.1807.06521.
[27] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism [EB/OL]. (2023-01-24) [2024-11-22]. https://arxiv.org/abs/2301.10051.
[28] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
[29] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [EB/OL]. (2022-05-25) [2024-11-22]. https://doi.org/10.48550/arXiv.2205.12740.