[1]高建设,郑子怡,宛 磊,等.足地接触对被动行走机器人步态动力学行为的影响[J].郑州大学学报(工学版),2025,46(03):1-10.[doi:10.13705/j.issn.1671-6833.2025.03.011]
 GAO Jianshe,ZHENG Ziyi,WAN Lei,et al.Effects of Foot-ground Contact on the Dynamic Gait Behavior of Passive Walking Robot[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):1-10.[doi:10.13705/j.issn.1671-6833.2025.03.011]
点击复制

足地接触对被动行走机器人步态动力学行为的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
1-10
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
Effects of Foot-ground Contact on the Dynamic Gait Behavior of Passive Walking Robot
文章编号:
1671-6833(2025)03-0001-10
作者:
高建设1 郑子怡1 宛 磊2 李 奎2 吴广良2
1.郑州大学 机械与动力工程学院,河南 郑州 450001;2.漯河医学高等专科学校第二附属医院,河南 漯河 462000
Author(s):
GAO Jianshe1 ZHENG Ziyi1 WAN Lei2 LI Kui2 WU Guangliang2
1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.The Second Affiliated Hospital of Luohe Medical College, Luohe 462000, China
关键词:
被动行走机器人 滑移 弹起 动力学分析 数值模拟
Keywords:
passive walking robot slip rebound dynamics analysis numerical simulation
分类号:
TP242
DOI:
10.13705/j.issn.1671-6833.2025.03.011
文献标志码:
A
摘要:
为解决被动行走机器人步态研究中难以分析滑移、弹起等复杂步态的动力学行为的问题,搭建了一种考虑足地接触的圆弧足被动行走机器人模型,分析其在路面材料变化的复杂行走路况下表现出的多种行走模式,并揭示了多参数协同演化下的步态失稳机制。首先,引入赫兹接触模型与库仑摩擦模型描述足地间的法向接触力与切向摩擦力,使用第二类拉格朗日方程进行动力学建模;其次,通过改变接触参数模拟不同弹性与摩擦特性的行走路面,采用数值仿真对行走中的滑移、弹起、跌倒等现象进行研究,获得使机器人行走性能较好的足地接触条件;最后,使用分岔图、时间响应图等工具对机器人各结构参数协同演化时的行走步态进行分析。研究结果表明:摩擦系数大于0.24且阻尼系数大于4.37×106 kg/(m1.5·s)的足地接触环境是机器人稳定行走的必要条件,摩擦系数和阻尼系数的减小将分别使步态出现滑移和弹起,且摩擦系数对步态的影响占主导地位,两接触参数持续减小将使机器人摔倒;在结构参数中,髋关节质量及转动惯量的减小、足半径增大都更有利于机器人适应大范围的行走斜面角度;同时观察到,无论结构参数如何演化,机器人都将随着斜面角度的增大通过滑移而引发步态失稳。
Abstract:
To address the issue of analyzing the complex dynamic behaviors of gait, such as slip and bounce, in passive walking robots, an arc-based bipedal passive walking robot model considering foot-ground contact was developed, to analyze various walking modes exhibited with complex walking conditions with changes in ground surface materials. It could reveal the gait instability mechanisms with multi-parameter co-evolution. Firstly, the Hertz contact model and Coulomb friction model was introduced to describe the normal contact force and tangential friction force between the foot and the ground. The second kind of Lagrangian equation was used for dynamic modeling. Secondly, by changing contact parameters to simulate different walking surfaces, numerical simulations were employed to study phenomena such as slipping, bouncing, and falling during walking, so as to obtaining foot-ground contact conditions that optimize the robot′s walking performance. Finally, tools such as bifurcation diagrams and time response plots were used to analyze the walking gait of the robot during the co-evolution of various structural parameters. The research results indicated that reducing the friction coefficient and damping coefficient could cause slipping and bouncing in the gait, respectively, and continued reduction could cause the robot to fall. Among the structural parameters, reducing the hip joint mass and moment of inertia, and increasing the foot radius were more conducive to the robot adapting to a wide range of walking slope angles. Seemed that regardless of how the structural parameters evolved, the robot would experience gait instability due to slipping as the slope angle increased.

参考文献/References:

[1]JABERI MIANDOAB M,REZA HAGHJOO M,BEIGZADEH B. Toward humanlike passive dynamic walking with physical and dynamic gait resemblance[J]. IEEE Access, 2024, 12: 111060-111069. 

[2]IRIBE M, HIROUJI R, URA D, et al. Experimental verification of the characteristic behaviors in passive dynamic walking[J]. Artificial Life and Robotics, 2021, 26(2): 187-194. 
[3]刘鑫宇. 双足准被动步行机器人及控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. 
LIU X Y. Research on biped quasi-passive walking robot and its control strategy[D]. Harbin: Harbin Institute of Technology, 2017. 
[4]MIKOLAJCZYK T, MIKOŁAJEWSKA E, AL-SHUKA H F N, et al. Recent advances in bipedal walking robots: review of gait, drive, sensors and control systems[J]. Sensors, 2022, 22(12): 4440. 
[5]ZHOU Y N, SUN Z K, ZHAO N N, et al. Stability analysis for passive robots walking on inclined surfaces with local angles [ J]. Physica Scripta, 2024, 99 (10): 105245. 
[6]LIU Z Y, GAO J S, RAO X B, et al. Complex dynamics of the passive biped robot with flat feet: gait bifurcation, intermittency and crisis[J]. Mechanism and Machine Theory, 2024, 191: 105500. 
[7]MEMAR KOCHEH BAGH N, LIU P C. Control and gait generation of biped robots: a review[M]∥Advances in Intelligent Manufacturing and Robotics. Singapore: Springer Nature Singapore, 2024: 503-517. 
[8]MCGEER T. Passive dynamic walking[J]. International Journal of Robotics Research, 1990, 9(2): 62-82. 
[9]SADEGHIAN H, BARKHORDARI M. Orbital analysis of passive dynamic bipeds; the effect of model parameters and stabilizing arm[J]. International Journal of Mechanical Sciences, 2020, 178: 105616. 
[10]高建设, 暴雨萌, 赵天, 等. 非平整路面下被动行走机器人的步态动力学演化[J/OL]. 吉林大学学报(工学版), 2024: 1-10(2024-07-15)[2024-11-06]. http: ∥kns. cnki. net/KCMS/detail/detail. aspx? filename = JLGY2024 0711001&dbname=CJFD&dbcode=CJFQ. 
GAO J S, BAO Y M, ZHAO T, et al. Gait dynamics evolution of passive walking robot on uneven road surface [J/OL]. China Industrial Economics, 2024: 1-10 (2024-07-15)[2024-11-06]. http:∥kns. cnki.net/ KCMS/detail/detail. aspx? filename=JLGY20240711001 &dbname=CJFD&dbcode=CJFQ. 
[11]彭金柱, 张建新, 曾庆山. 基于改进差分进化的3RPS机器人逆运动学参数标定[J]. 郑州大学学报(工学版), 2022, 43(5): 1-7, 38. 
PENG J Z, ZHANG J X, ZENG Q S. Inverse kinematic parameters calibration of 3-RPS parallel robot based on modified differential evolution[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(5): 17, 38. 
[12] RAO X B, GAO J S, DING S L, et al. Multistability of gaits, the basin of attraction and its external topology in the simplest passive walking model on stairs[J]. Chaos, Solitons & Fractals, 2023, 172: 113592. 
[13] GRITLI H, BELGHITH S, KHRAEIF N. Intermittency and interior crisis as route to chaos in dynamic walking of two biped robots[J]. International Journal of Bifurcation and Chaos, 2012, 22(3): 1250056. 
[14] ASANO F, SAKA T, HARATA Y. 3-DOF passive dynamic walking of compass-like biped robot with semicircular feet generated on slippery downhill[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2016: 3570-3575. 
[15]张瑾, 王天舒. 考虑接触滑移的被动行走器行走步态研究[J]. 机械工程学报, 2011, 47(13): 16-22. 
ZHANG J, WANG T S. Research on process of the passive walking with bouncing and slipping[J]. Journal of Mechanical Engineering, 2011, 47(13): 16-22. 
[16] QI F, WANG T S, LI J F. The elastic contact influences on passive walking gaits[J]. Robotica, 2011, 29(5): 787-796. 
[17]郑鹏, 王琪, 吕敬, 等. 摩擦与滚阻对被动行走器步态影响的研究[J]. 力学学报, 2020, 52(1): 162-170. 
ZHENG P, WANG Q, LYU J, et al. Study on the influence of friction and rolling resistance on the gait of passive dynamic walker[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 162-170. 
[18] ROELES S, ROWE P J, BRUIJN S M, et al. Gait stability in response to platform, belt, and sensory perturbations in young and older adults[J]. Medical & Biological Engineering & Computing, 2018, 56(12): 2325-2335. 
[19] SAFARTOOBI M, DARDEL M, MOHAMMADI DANIALI H. Passive walking biped robot model with flexible viscoelastic legs[J]. Nonlinear Dynamics, 2022, 109 (4): 2615-2636. 
[20] THUILOT B, ESPIAU B,GOSWAMI A. Compass-like biped robot part I: stability and bifurcation of passive gaits[EB/OL].(1996-01-01)[2024-11-08]. http:∥ fx. zzu. superlib. net/detail _38502727e7500f26d19ba 7796dcaf78bcf7b008e0e67ba611921b0a3ea2551014ccfd8 c06884d4e176114bc658cda12eb45a781c29ca01f804f04d 6b5b3b300e0ac344ecde50c20b0a3ef881b0ca39a5?. 
[21] SKRINJAR L, SLAVI ˇ C J, BOLTEŽAR M. A review of continuous contact-force models in multibody dynamics [J]. International Journal of Mechanical Sciences,2018, 145: 171-187. 
[22] COLANTONIO L, DEHOMBREUX P, HAJŽMAN M, et al. 3D projection of the LuGre friction model adapted to varying normal forces[J]. Multibody System Dynamics, 2022, 55(3): 267-291. 
[23] ZHENG X D, WANG Q. LCP method for a planar passive dynamic walker based on an event-driven scheme [J]. Acta Mechanica Sinica, 2018, 34(3): 578-588. 
[24]王延昭. 横倾路面上人体足底的步进摩擦接触特性研究[D]. 洛阳: 河南科技大学, 2022. 
WANG Y Z. Study on step-by-step friction contact characteristics of human plantar on cross-sloping pavement [D]. Luoyang: Henan University of Science and Technology, 2022. 
[25]祁峰. 弹性接触对被动行走多体系统动力学与稳定性的影响研究[D]. 北京: 清华大学, 2013. 
QI F. Study on the influence of elastic contact on dynamics and stability of passive walking multi-body system [D]. Beijing: Tsinghua University, 2013. 
[26] ADDED E, GRITLI H, BELGHITH S. Additional complex behaviors, bifurcations and chaos, in the passive walk of the compass-type bipedal robot[J]. IFAC-PapersOnLine, 2021, 54(17): 111-116.

相似文献/References:

[1]朱海堂,谢晶晶,高丹盈..纤维增强塑料筋锚杆锚固性能的数值分析[J].郑州大学学报(工学版),2004,25(01):6.[doi:10.3969/j.issn.1671-6833.2004.01.002]
[2]高丹盈,谢晶晶,李趁趁..纤维聚合物筋混凝土粘结性能的基本问题[J].郑州大学学报(工学版),2002,23(01):1.[doi:10.3969/j.issn.1671-6833.2002.01.001]
 GAO Danying,XIE Jingjing,Lee took advantage of it.Basic issues with the bonding properties of fiber polymer reinforced concrete[J].Journal of Zhengzhou University (Engineering Science),2002,23(03):1.[doi:10.3969/j.issn.1671-6833.2002.01.001]

更新日期/Last Update: 2025-05-22