参考文献/References:
[1] 陈宏, 陈新财, 巩晓赟, 等. 基于知识图谱的风电机组诊断系统构建与应用[J]. 郑州大学学报(工学版), 2023, 44(6): 54-60, 98.
CHEN H, CHEN X C, GONG X B, et al. Construction and application of wind turbine diagnosis system based on knowledge graph[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 54-60, 98.
[2] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26)[2025-06-08]. https://doi.org/10.48550/arXiv.1907.11692.
[3] ZELENKO D, AONE C, RICHARDELLA A. Kernel methods for relation extraction[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2002: 71-78.
[4] YU X F, LAM W. Jointly identifying entities and extracting relations in encyclopedia text via a graphical model approach[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: ACL, 2010: 1399-1407.
[5] LI Q, JI H. Incremental joint extraction of entity mentions and relations[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2014: 402-412.
[6] MIWA M, SASAKI Y. Modeling joint entity and relation extraction with table representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1858-1869.
[7] WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[EB/OL]. (2019-09-07)[2025-06-05]. https://doi.org/10.48550/arXiv.1909.03227.
[8] WANG Y C, YU B W, ZHANG Y Y, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[EB/OL]. (2020-10-26)[2025-06-05]. https://doi.org/10.48550/arXiv.2010.13415.
[9] YAN Z H, ZHANG C, FU J L, et al. A partition filter network for joint entity and relation extraction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 185-197.
[10] ZHENG H Y, WEN R, CHEN X, et al. PRGC: potential relation and global correspondence based joint relational triple extraction[EB/OL]. (2021-06-18)[2025-06-08]. https://doi.org/10.48550/arXiv.2106.09895.
[11] LI X M, LUO X T, DONG C H, et al. TDEER: an efficient translating decoding schema for joint extraction of entities and relations[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8055-8064.
[12] SUI D B, ZENG X R, CHEN Y B, et al. Joint entity and relation extraction with set prediction networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(9): 12784-12795.
[13] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[2025-06-08]. https://doi.org/10.48550/arXiv.1810.04805.
[14] GAO C, ZHANG X, LI L Y, et al. ERGM: a multi-stage joint entity and relation extraction with global entity match[J]. Knowledge-Based Systems, 2023, 271: 110550.
[15] LI R, LA K J, LEI J S, et al. Joint extraction model of entity relations based on decomposition strategy[J]. Scientific Reports, 2024, 14(1): 1786.
[16] 宋玲, 韦紫君, 陈燕, 等. 基于RoBERTa和指针网络的中文实体与关系联合抽取方法及系统: CN116665359A[P]. 2023-08-29.
SONG Ling, WEI Zijun, CHEN Yan, et al. Joint extraction method and system of chinese entities and relations based on RoBERTa and pointer network[P]. Guangxi Zhuang Autonomous Region: CN202310679557.1,2023-08-29.
[17] CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.
[18] VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[EB/OL]. (2015-06-09)[2025-06-08]. https://doi.org/10.48550/arXiv.1506.03134.
[19] 张强, 曾俊玮, 陈锐. 基于对比学习与梯度惩罚的实体关系联合抽取模型[J]. 吉林大学学报(理学版), 2024, 62(5): 1155-1162.
ZHANG Q, ZENG J W, CHEN R. Entity-relation joint extraction model based on contrastive learning and gradient penalty[J]. Journal of Jilin University (Science Edition), 2024, 62(5): 1155-1162.
[20] LI S J, HE W, SHI Y B, et al. DuIE: A large-scale Chinese dataset for information extraction[C]//Natural Language Processing and Chinese Computing. Natural Language Processing and Chinese Computing: 8th CCF International Conference. Cham: Springer, 2019: 791-800.
[21] LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[EB/OL]. (2019-09-26)[2025-06-08]. https://doi.org/10.48550/arXiv.1909.11942.
[22] CLARK K, LUONG M T, LE Q V, et al. ELECTRA: pre-training text encoders as discriminators rather than generators[EB/OL]. (2020-03-23)[2025-06-08]. https://doi.org/10.48550/arXiv.2003.10555.