[1]张海宾,魏洪基,王 超,等.基于改进YOLOv5s干扰跳频信号调制识别[J].郑州大学学报(工学版),2025,46(05):43-50.[doi:10.13705/j.issn.1671-6833.2025.05.008]
 ZHANG Haibin,WEI Hongji,WANG Chao,et al.Modulation Recognition of Frequency Hopping Signal under Interference Based on Improved YOLOv5s[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):43-50.[doi:10.13705/j.issn.1671-6833.2025.05.008]
点击复制

基于改进YOLOv5s干扰跳频信号调制识别()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年05期
页码:
43-50
栏目:
出版日期:
2025-08-10

文章信息/Info

Title:
Modulation Recognition of Frequency Hopping Signal under Interference Based on Improved YOLOv5s
文章编号:
1671-6833(2025)05-0043-08
作者:
张海宾1 魏洪基1 王 超2 向长波3 杨明洋3 李晓龙4
1.西安电子科技大学 杭州研究院,浙江 杭州 311200;2.西安电子科技大学 通信工程学院,陕西 西安 710126; 3.中电科思仪科技有限公司,山东 青岛 266555;4.北京控制与电子技术研究所,北京 100038
Author(s):
ZHANG Haibin1 WEI Hongji1 WANG Chao2 XIANG Changbo3 YANG Mingyang3 LI Xiaolong4
1.Hangzhou Research Institute,Xidian University, Hangzhou 311200, China; 2.School of Telecommunications Engineering, Xidian University, Xi’an 710126, China; 3.Ceyear Technologies Co., Ltd., Qingdao 266555, China; 4.Beijing Institute of Control and Electronic Technology, Beijing 100038, China
关键词:
跳频信号 信号检测 信号识别 干扰信号 YOLOv5s
Keywords:
frequency hopping signal signal detection signal recognition interference signal YOLOv5s
分类号:
TN971
DOI:
10.13705/j.issn.1671-6833.2025.05.008
文献标志码:
A
摘要:
复杂电磁环境中干扰信号会严重恶化跳频信号检测和识别性能,为了解决传统的检测方法在实际应用中存在错检、漏检、误检、多检等问题,通过对YOLOv5s网络进行改进,提出一种基于时频图的信号检测和识别算法。首先,构建了跳频信号+干扰信号组合模式的数据集,包含4种不同跳频信号调制类型和6种不同干扰类型,每个组合生成300个高分辨率时频图样本,总计构建7 200组数据;其次,考虑到干扰和信号在时频图上拥有相似的特征,而跳频信号频率会随时间不断跳变,这使得信号附近的背景信息成为区分信号与干扰的关键特征,提出利用语境分层模块对背景信息进行分级,采用深度可分离卷积模块提取信号附近的背景信息,利用门控聚合机制加权聚合背景信息和信号特征,输出更具判别力的复合特征;最后,利用语境分层模块与门控聚合机制对YOLOv5s网络的主干网络部分进行改造,得到改进的跳频信号检测器。仿真结果表明:较传统YOLOv5s网络,所提算法的召回率R提升15.9百分点,均值平均精度mAP@0.5∶0.95提升8.9百分点,F1提升9百分点,错检、漏检等情况显著减少。关键词:跳频信号; 信号检测; 信号识别; 干扰信号; YOLOv5s
Abstract:
In complex electromagnetic environments, interference signals can severely degrade the detection and recognition performance of frequency-hopping signals. To address issues of false detection, missed detection, and over-detection in traditional methods, in this study an improved time-frequency diagram-based signal detection and recognition algorithm was proposed by modifying the YOLOv5s network. Firstly, a composite dataset containing frequency hopping signals + interference signals was constructed, comprising 4 modulation types of frequency hopping signals and 6 interference types, with 300 high-resolution time-frequency diagram samples generated for each combination (totaling 7 200 groups). Secondly, considering the similar features between interference and signals in time-frequency diagrams, and recognizing that the frequency variation pattern of hopping signals could make background information around signals crucial for differentiation, a context hierarchy module was proposed to hierarchically process background information. This module employed depthwise separable convolution to extract surrounding background features and utilized a gated aggregation mechanism to perform weighted fusion of background information and signal features, thereby generating more discriminative composite features. Finally, the backbone network of YOLOv5s was modified by integrating the context hierarchy module and gated aggregation mechanism to develop an improved frequency hopping signal detector. Simulation results showed that compared with the original YOLOv5s network, the proposed method achieved 15.9 percentage points improvement in recall rate R, 8.9 percentage points enhancement in mean average precision mAP@0.5∶0.95, and 9 percentage points increase in F1, while significantly reducing false and missed detection occurrences.

参考文献/References:

[1]李红光, 郭英, 眭萍, 等. 基于时频能量谱纹理特征的跳频调制方式识别[J]. 通信学报, 2019, 40(10): 20-29. 

LI H G, GUO Y, SUI P, et al. Frequency hopping modulation recognition based on time-frequency energy spectrum texture feature[J]. Journal on Communications, 2019, 40(10): 20-29. 
[2]张萌, 王文, 任俊星, 等. 基于HOG-SVM的跳频信号检测识别算法[J]. 信息安全学报, 2020, 5(3): 62-77. 
ZHANG M, WANG W, REN J X, et al. Detection and recognition algorithm for frequency hopping signals based on HOG-SVM[J]. Journal of Cyber Security, 2020, 5 (3): 62-77. 
[3]胡晓芳. 基于稀疏性的跳频信号检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. 
HU X F. Research on frequency hopping signal detection technology based on sparsity[D]. Harbin: Harbin Engineering University, 2018. 
[4]HUANG D K, YAN X P, HAO X H, et al. Low SNR multi-emitter signal sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep learning model[J]. Sensors, 2022, 22(20): 7783. 
[5]周凯. 基于YOLOv5的跳频信号调制方式检测识别[J]. 数字通信世界, 2022(11): 8-10. 
ZHOU K. Detection and identification of frequency hopping signal modulation based on YOLOv5[J]. Digital Communication World, 2022(11): 8-10. 
[6]WANG Y Y, HE S R, WANG C R, et al. Detection and parameter estimation of frequency hopping signal based on the deep neural network[J]. International Journal of Electronics, 2022, 109(3): 520-536. 
[7]CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807. 
[8]GIRSHICK R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015: 1440-1448. 
[9]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition .Piscataway:IEEE, 2016: 779-788. 
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]∥Lecture Notes in Computer Science. Cham: Springer, 2016: 21-37. 
[12] YANG J W, LI C Y, DAI X Y, et al. Focal modulation networks[EB/OL].(2022-03-22)[2025-01-02]. https:∥doi.org/10.48550/arXiv.2203.11926. 
[13]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2022: 7464-7475. 
[14] VARGHESE R, SAMBATH M. YOLOv8: A novel object detection algorithm with enhanced performance and robustness[C]∥2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems.Piscataway:IEEE, 2024: 1-6.

更新日期/Last Update: 2025-09-19