[1]刘海波,梁 鹏,刘子乾.考虑随机时滞影响的广域电力系统鲁棒稳定性分析[J].郑州大学学报(工学版),2025,46(05):98-106.[doi:10.13705/j.issn.1671-6833.2025.05.004]
 LIU Haibo,LIANG Peng,LIU Ziqian.Robust Stability Analysis for Wide-area Power System Considering Influence of Stochastic Time-delay[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):98-106.[doi:10.13705/j.issn.1671-6833.2025.05.004]
点击复制

考虑随机时滞影响的广域电力系统鲁棒稳定性分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年05期
页码:
98-106
栏目:
出版日期:
2025-08-10

文章信息/Info

Title:
Robust Stability Analysis for Wide-area Power System Considering Influence of Stochastic Time-delay
文章编号:
1671-6833(2025)05-0098-09
作者:
刘海波12 梁 鹏1 刘子乾1
1.河南理工大学 电气工程与自动化学院,河南 焦作 454000;2.河南理工大学 河南省煤矿装备智能检测与控制重点实验室,河南 焦作 454000
Author(s):
LIU Haibo12 LIANG Peng1 LIU Ziqian1
1.School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Henan Polytechnic University, Jiaozuo 454000, China
关键词:
广域电力系统 随机时滞 稳定性 Lyapunov泛函 积分不等式
Keywords:
wide-area power systems stochastic time-delay stability Lyapunov functional integral inequality
分类号:
TM712
DOI:
10.13705/j.issn.1671-6833.2025.05.004
文献标志码:
A
摘要:
针对大规模互联电力系统中存在的传输信号延时问题,提出了一种计及随机时滞的广域电力系统鲁棒稳定性分析方法。首先,考虑实际电力系统中时滞的随机特性和不确定性因素,并假定时滞发生的概率服从伯努利分布,建立具有时滞概率分布特征和参数不确定性的系统模型;其次,为了引入更多随机时滞的概率分布信息,构造了包含系统状态信息、时滞信息及它们导数的增广向量和具有多重积分项的Lyapunov-Krasovskii (L-K)泛函,并运用广义自由权矩阵不等式处理泛函导数,得到其更加精确的上界;最后,利用Schur补引理和线性矩阵不等式方法,得到保证系统均方渐近稳定的充分条件。算例仿真结果表明:所提方法与现有其他方法相比,系统的时滞稳定裕度提高了73%,且存在参数扰动下达到稳定的时间减少了40%,结果的保守性得到了显著降低。
Abstract:
In view of the time-delay caused by signal transmission in the large-scale interconnected power systems, the robust stability of power systems with stochastic time-delay was investigated. Firstly, by considering the stochastic characteristics of time-delay and uncertain factors in practical systems, and assuming that the probability of timedelay obeyed Bernoulli distribution, a new system model was established. Secondly, to introduce more probability distribution information of stochastic time-delay, a new augmented vector and L-K functional with more state information and multiple integral terms were constructed. Then, by utilizing the generalized free weight matrix inequality (GFWMI) to handle the quadratic integral term, more accurate upper bound was obtained. As a consequence, a less conservative mean square asymptotic stability criterion was derived by using Schur lemma and linear matrix inequality method. Simulation results show that the proposed method improves the time-delay stability margin of the system by 73% and reduces the time to achieve stability by 40% under parameter disturbances. The conservatism of the results was significantly reduced in comparison with existing literature.

参考文献/References:

[1]王要强, 赵楷, 王义, 等. 基于平方根UPF的电力系统鲁棒预测状态估计[J]. 郑州大学学报(工学版), 2024, 45(3): 119-126,142. 

WANG Y Q, ZHAO K, WANG Y, et al. Robust forecasting state estimation of power system based on square root UPF[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 119-126,142. 
[2]陈中, 唐浩然, 邢强, 等. 计及随机时滞与丢包的电力系统广域信号预测补偿方法[J]. 电力系统保护与控制, 2019, 47(15): 31-39. 
CHEN Z, TANG H R, XING Q, et al. A prediction compensation method considering stochastic time delay and data loss of power system wide-area signals[J]. Power System Protection and Control, 2019, 47(15): 31-39. 
[3]李宁, 孙永辉, 卫志农, 等. 基于Wirtinger不等式的电力系统延时依赖稳定判据[J]. 电力系统自动化, 2017, 41(2): 108-113. 
LI N, SUN Y H, WEI Z N, et al. Delay-dependent stability criteria for power system based on wirtinger integral inequality[J]. Automation of Electric Power Systems, 2017, 41(2): 108-113. 
[4]王要强, 杨志伟, 王义, 等. 计及噪声和模型参数不确定的发电机动态状态估计[J]. 郑州大学学报(工学版), 2023, 44(6): 68-75. 
WANG Y Q, YANG Z W, WANG Y, et al. Dynamic state estimation of generators considering noise and model parameter uncertainties[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 68-75. 
[5]孙国强, 屠越, 孙永辉, 等. 时变时滞电力系统鲁棒稳定性的改进型判据[J]. 电力系统自动化, 2015, 39 (3): 59-62. 
SUN G Q, TU Y, SUN Y H, et al. An improved robust stability criterion for power systems with time-varying delay[J]. Automation of Electric Power Systems, 2015, 39 (3): 59-62. 
[6]李啸骢, 王夏明. 基于积分不等式多时滞电力系统的改进稳定判据[J]. 电力系统自动化, 2020, 44(1): 59-66. 
LI X C, WANG X M. Integral inequality based improved stability criterion for power system with multiple time delays[J]. Automation of Electric Power Systems, 2020, 44(1): 59-66. 
[7]钱伟, 吴嘉欣, 费树岷. 基于时滞依赖矩阵泛函的变时滞电力系统稳定性分析[J]. 电力系统自动化, 2020, 44(1): 53-58. 
QIAN W, WU J X, FEI S M. Analysis on power systems stability with time-varying delay based on delay-dependent matrix functional[J]. Automation of Electric Power Systems, 2020, 44(1): 53-58. 
[8]郭良栋, 张旺. 基于积分不等式的多时滞电力系统稳定性分析[J]. 辽宁科技大学学报, 2021, 44(6): 470-476. 
GUO L D, ZHANG W. Stability analysis of multiple time-delay power system based on an integral inequality [J]. Journal of University of Science and Technology Liaoning, 2021, 44(6): 470-476. 
[9]郭建锋, 钱伟, 费树岷, 等. 基于优化泛函的多时滞广域电力系统稳定性分析[J]. 电力系统保护与控制, 2023, 51(12): 47-57. 
GUO J F, QIAN W, FEI S M, et al. Stability analysis for wide-area power systems with multiple time delays based on an optimized functional[J]. Power System Protection and Control, 2023, 51(12): 47-57. 
[10]彭思源, 肖会芹, 林惠潮. 时变时滞广域电力系统稳定性分析[J]. 湖南工业大学学报, 2021, 35(3): 6267. 
PENG S Y, XIAO H Q, LIN H C. Stability analysis of the wide-area power system with time-varying delay[J]. Journal of Hunan University of Technology, 2021, 35 (3): 62-67. 
[11]刘晓桂, 王炜, 曾红兵, 等. 不确定时滞电力系统鲁棒稳定性分析[J]. 湖南工业大学学报, 2018, 32 (4): 40-44. 
LIU X G, WANG W, ZENG H B, et al. Robust stability analysis of the uncertain time-delay power system[J]. Journal of Hunan University of Technology, 2018, 32 (4): 40-44. 
[12] CHAIBI N, TISSIR E H. Delay dependent robust stability of singular systems with time-varying delay[J]. International Journal of Control, Automation and Systems, 2012, 10(3): 632-638. 
[13]钱伟, 蒋鹏冲, 车凯. 基于Wirtinger不等式的时变时滞电力系统稳定性分析[J]. 电力系统保护与控制, 2016, 44(23): 79-85. 
QIAN W, JIANG P C, CHE K. Stability analysis for power system with time-delay based on Wirtinger inequality[J]. Power System Protection and Control, 2016, 44 (23): 79-85. 
[14]罗小丽, 戴璐, 练红海, 等. 具有时滞概率分布的电力系统负荷频率稳定性分析[J]. 系统科学与数学, 2021, 41(5): 1245-1255. 
LUO X L, DAI L, LIAN H H, et al. Load frequency stability analysis of power systems with probability distribution time-varying delays[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(5): 1245-1255. 
[15] PENG C, ZHANG J. Delay-distribution-dependent load frequency control of power systems with probabilistic interval delays[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3309-3317. 
[16]董朝宇, 贾宏杰, 姜懿郎. 含积分二次型的电力系统改进时滞稳定判据[J]. 电力系统自动化, 2015, 39 (24): 35-40. 
DONG C Y, JIA H J, JIANG Y L. Time-delay stability criteria for power system with integral quadratic form[J]. Automation of Electric Power Systems, 2015, 39(24): 35-40. 
[17]王蕾, 董朝宇, 贾宏杰, 等. 电力系统时滞稳定判据保守性差异量化评估方法[J]. 电力系统自动化, 2017, 41(10): 22-28. 
WANG L, DONG C Y, JIA H J, et al. Diversity-based quantitative evaluation method of conservatism of time-delay stability criteria for power systems[J]. Automation of Electric Power Systems, 2017, 41(10): 22-28. 
[18]钱伟, 王晨晨, 费树岷. 区间变时滞广域电力系统稳定性分析与控制器设计[J]. 电工技术学报, 2019, 34 (17): 3640-3650. 
QIAN W, WANG C C, FEI S M. Stability analysis and controller design of wide-area power system with interval time-varying delay[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3640-3650. 
[19] LIU H B, QIAN W, ZHAO Y J. State estimation of static neural networks with mixed delays: a new parameterized delay interval approach[J]. Journal of the Franklin Institute, 2023, 360(3): 1817-1834. 
[20] YANG B, SUN Y Z. A new wide area damping controller design method considering signal transmission delay to damp interarea oscillations in power system[J]. Journal of Central South University, 2014, 21(11): 4193-4198. 
[21] YAN H C, ZHANG H, MENG M Q. Delay-range-dependent robust H∞ control for uncertain systems with interval time-varying delays[J]. Neurocomputing, 2010, 73(7/8/9): 1235-1243. 
[22] SUN Y H, LI N, SHEN M Q, et al. Robust H∞ control of uncertain linear system with interval time-varying delays by using Wirtinger inequality[J]. Applied Mathematics and Computation, 2018, 335: 1-11. 
[23] YIN Z M, JIANG X F, WANG F. Stability criteria for systems with multiple probabilistic intervals time-varying delay[J]. International Journal of Control, Automation and Systems, 2020, 18(4): 877-885. 
[24]马静, 李俊臣, 李益楠, 等. 基于改进自由权矩阵与广义特征值的时滞稳定上限计算方法研究[J]. 电力系统保护与控制, 2014, 42(18): 1-8. 
MA J, LI J C, LI Y N, et al. Research on time-delay upper-bound of power system wide-area damping controllers based on improved free-weighting matrices and generalized eigenvalue problem[J]. Power System Protection and Control, 2014, 42(18): 1-8. 
[25]汪豪, 钱伟, 郭建峰, 等. 变时滞影响下广域电力系统的H∞控制[J]. 电力系统保护与控制, 2021, 49 (18): 70-80. 
WANG H, QIAN W, GUO J F, et al. H∞ control for a wide-area power system with time-varying delay[J]. Power System Protection and Control, 2021, 49(18): 70-80. 
[26]钱伟, 高超. 基于凸组合方法的变时滞电力系统稳定性判据[J]. 电力系统保护与控制, 2015, 43(19): 37-42. 
QIAN W, GAO C. A stability criterion for power system with time-varying delay based on convex combination[J]. Power System Protection and Control, 2015, 43(19): 3742.

更新日期/Last Update: 2025-09-19