[1]GUO H, YANG C Y, ZHOU L Q, et al. A novel knowledge graph recommendation algorithm based on graph convolutional network[J]. Connection Science, 2024, 36 (1): 2327441. [2]LIU T Y, SHEN H J, CHANG L, et al. Iterative heterogeneous graph learning for knowledge graph-based recommendation[J]. Scientific Reports, 2023, 13(1): 6987.
[3]LI D Z, QU H B, WANG J Q. A survey on knowledge graph-based recommender systems[C]∥2023 China Automation Congress (CAC). Piscataway: IEEE, 2023: 2925-2930.
[4]GAO C, ZHENG Y, LI N, et al. A survey of graph neural networks for recommender systems: challenges, methods, and directions[J]. ACM Transactions on Recommender Systems, 2023, 1(1): 1-51.
[5]WANG H W, ZHANG F Z, XIE X, et al. DKN[C]∥ Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835-1844.
[6]HU B B, SHI C, ZHAO W X, et al. Leveraging metapath based context for top-N recommendation with a neural co-attention model[C]∥Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1531-1540.
[7]WANG F, LI Y S, ZHANG Y J, et al. KLGCN: knowledge graph-aware light graph convolutional network for recommender systems[J]. Expert Systems with Applications, 2022, 195: 116513.
[8]RUAN S Q, YANG C, LI D S. Knowledge-enhanced personalized hierarchical attention network for sequential recommendation[J]. World Wide Web, 2024, 27(1): 2.
[9]CHEN F K, YIN G S, DONG Y X, et al. KHGCN: knowledge-enhanced recommendation with hierarchical graph capsule network[J]. Entropy, 2023, 25(4): 697.
[10] TAO S H, QIU R H, CAO Y, et al. Intent with knowledge-aware multiview contrastive learning for recommendation[J]. Complex & Intelligent Systems, 2024, 10 (1): 1349-1363.
[11]WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]∥Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.
[12]WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]∥Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958.
[13]WANG Z, LIN G Y, TAN H B, et al. CKAN[C]∥Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228.
[14] CHEN Y K, YANG M L, ZHANG Y X, et al. Modeling scale-free graphs with hyperbolic geometry for knowledgeaware recommendation[C]∥Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 94-102.
[15]王海荣, 徐玺, 王彤, 等. 多模态命名实体识别方法研究进展[J]. 郑州大学学报(工学版), 2024, 45 (2): 60-71.
WANG H R, XU X, WANG T, et al. Research progress of multimodal named entity recognition[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45 (2): 60-71.
[16] BAI H Y, WU L, HOU M, et al. Multimodality invariant learning for multimedia-based new item recommendation [C]∥Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 677-686.
[17] CUI X H, QU X L, LI D M, et al. MKGCN: multi-modal knowledge graph convolutional network for music recommender systems[J]. Electronics, 2023, 12(12): 2688.
[18] SUN R, CAO X Z, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems[C]∥Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 14051414.
[19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2024-06-11]. https:∥arxiv. org/ abs/1409.1556v6.
[20] DEVLIN J, CHANG M W, LEE K, et al. BERT: pretraining of deep bidirectional transformers for language understanding[EB/OL]. (2019-05-24)[2024-0611]. https:∥arxiv.org/abs/1810.04805v2.
[21] MA T, HUANG L T, LU Q Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-27.
[22] DAI Q Y, WU X M, FAN L, et al. Personalized knowledge-aware recommendation with collaborative and attentive graph convolutional networks[J]. Pattern Recognition, 2022, 128: 108628.
[23] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems [C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
[24]WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]∥The World Wide Web Conference. New York: ACM, 2019: 3307-3313.
[25] LIU X K, YANG B, XU J Y. SKGCR: self-supervision enhanced knowledge-aware graph collaborative recommendation[J]. Applied Intelligence, 2023, 53(17): 19872-19891.
[26] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]∥Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443.