[1]徐铭达,杜占玮,王 震,等.基于城市接触网络的新发传染病风险监测[J].郑州大学学报(工学版),2025,46(04):76-84.[doi:10.13705/j.issn.1671-6833.2025.04.003]
 XU Mingda,DU Zhanwei,WANG Zhen,et al.Emerging Infectious Disease Risk Surveillance Based on Urban Contact Networks[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):76-84.[doi:10.13705/j.issn.1671-6833.2025.04.003]
点击复制

基于城市接触网络的新发传染病风险监测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
76-84
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Emerging Infectious Disease Risk Surveillance Based on Urban Contact Networks
文章编号:
1671-6833(2025)04-0076-09
作者:
徐铭达1 杜占玮2 王 震3 高 超1
1. 西北工业大学 光电与智能研究院,陕西 西安 710072;2. 香港大学 公共卫生学院,香港 999077;3. 西北工业大学 网络空间安全学院,陕西 西安 710072
Author(s):
XU Mingda1 DU Zhanwei2 WANG Zhen3 GAO Chao1
1. School of Artificial Intelligence, OPtics and ElectroNics ( iOPEN) , Northwestern Polytechnical University, Xi’ an 710072, China; 2. School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region 999077, China; 3. School of Cybersecurity, Northwestern Polytechnical University, Xi’ an 710072, China
关键词:
接触网络 风险监测 传染病建模 早期预警 大数据挖掘
Keywords:
contact network risk surveillance infectious disease modelling early warning big data mining
分类号:
TP391N94
DOI:
10.13705/j.issn.1671-6833.2025.04.003
文献标志码:
A
摘要:
针对新发传染病传播初期缺乏高分辨率的人际接触数据,难以基于接触网络全局结构特性实施传染病早期预警的挑战,面向多源数据驱动的传染病哨点监测策略研究,提出了一种基于城市接触网络的新发传染病风险监测框架。 通过整合多源普查和调查数据,构建了映射城市人口结构特征的接触网络,用以模拟特定城市中新发传染病的传播态势。 基于此,提出了一种“一户一人”的家庭监测策略,该策略不需要预知全局网络结构,仅需少量哨点样本即可实现接近全人群覆盖的监测效果。 实验结果表明:在疾病低传染性时期( 基本再生数为 1. 2) ,家庭监测策略与随机监测策略的性能相近,相较于监测整体人群能够降低监测成本。 随着传染病的传染性增加( 基本再生数为 2. 0 和 3. 0) ,家庭监测策略的早期预警性能仅次于最大连接策略,能够有效感知新发传染病的传播风险,同时相比随机监测策略,其早期预警时间分别平均提前了 1. 03 d(37%)和 0. 69 d(53%) 。
Abstract:
Given the challenge of limited high-resolution human contact data during the early stages of emerging infectious disease outbreaks, it is difficult to implement early warning strategies via the global structural characteristics of contact networks. Multi-source data-driven sentinel surveillance strategies for infectious diseases were the focuses of this study, and a novel framework for emerging infectious disease risk surveillance based on urban contact networks was proposed. By integrating multi-source census and survey data, a contact network reflecting the characteristics of the urban population structure was constructed to simulate the transmission of emerging infectious disease in specific cities. Based on this, a " one person per household" surveillance strategy was proposed. This strategy leveraged a small number of selected sentinel samples to achieve near-whole population coverage for effective risk surveillance, eliminating the need for prior knowledge of the global network structure. Experimental results demonstrated that during periods of low disease transmissibility ( basic reproduction number of 1. 2) , the proposed household surveillance strategy performed at the same level to the random surveillance strategy, while with lower cost compared with surveillance the whole population. As transmissibility increased ( basic reproduction number from 2. 0 to 3. 0) , the early warning performance of household surveillance strategy ranked the second only to the most connected strategy, effectively capturing the transmission of emerging infectious diseases. Notably, it effectively captured the transmission risk of emerging infectious diseases, providing an early warning time of 1. 03 d(37%) and 0. 69 d(53%) compared with the random surveillance strategy.

参考文献/References:

[1] TEDROS A G. WHO Director-General′ s speech at the world governments summit [ EB / OL ] . ( 2024 - 02 - 12 ) [2024-09-14] . https:∥www. who. int / director-general / speeches/ detail / who-director-general-s-speech-at-theworld-governments-summit---12-february-2024. 

[2] JIANG S B, SHI Z L. The first disease X is caused by a highly transmissible acute respiratory syndrome coronavirus[ J] . Virologica Sinica, 2020, 35(3) : 263-265. 
[3] HEESTERBEEK H, ANDERSON R M, ANDREASENV, et al. Modeling infectious disease dynamics in the complex landscape of global health[ J] . Science, 2015, 347(6227) : 1-10. 
[4] YANG B, GUO H, YANG Y, et al. Modeling and mining spatiotemporal patterns of infection risk from heterogeneous data for active surveillance planning [ C] ∥AAAI Conference on Artificial Intelligence. Washington DC: AAAI, 2014: 493-499. 
[5] MISTRY D, LITVINOVA M, PIONTTI A P Y, et al. Inferring high-resolution human mixing patterns for disease modeling[ J] . Nature Communications, 2021, 12: 323. 
[6] MISTRY D, KERR C C, ABEYSURIYA R, et al. SynthPops: a generative model of human contact networks[EB / OL] . (2021-07-05)[2024-09-14]. https:∥docs. idmod. org / projects/ synthpops/ en / latest / overview. html. 
[7] PREM K, COOK A R, JIT M. Projecting social contact matrices in 152 countries using contact surveys and demographic data[ J] . PLoS Computational Biology, 2017, 13 (9) : e1005697. 
[8] CHRISTAKIS N A, FOWLER J H. Social network sensors for early detection of contagious outbreaks[ J] . PLoS One, 2010, 5(9) : e12948. 
[9] 焦敏, 高倩倩, 刘金妹, 等. 新发( 重大) 传染病 “ 全 哨点” 概念界定[ J] . 中国公共卫生, 2021, 37( 10) : 1459-1462. 
JIAO M, GAO Q Q, LIU J M, et al. Defining overall sentinel surveillance on emerging ( major) infectious diseases - a literature study [ J] . Chinese Journal of Public Health, 2021, 37(10) : 1459-1462. 
[10] 欧阳聪, 关静, 杨鸣. 基于资源分配和动态分组的合 作协同演化算法[ J] . 郑州大学学报(工学版) , 2023, 44(5) : 10-16. 
OUYANG C, GUAN J, YANG M. Cooperative co-evolution algorithm based on resource allocation and dynamic grouping[ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(5) : 10-16. 
[11] PEI S, TENG X, LEWIS P, et al. Optimizing respiratory virus surveillance networks using uncertainty propagation [ J] . Nature Communications, 2021, 12: 222. 
[12] MCGOWAN C R, TAKAHASHI E, ROMIG L, et al. Community-based surveillance of infectious diseases: a systematic review of drivers of success [ J] . BMJ Global Health, 2022, 7(8) : e009934. 
[13] HERRERA J L, SRINIVASAN R, BROWNSTEIN J S, et al. Disease surveillance on complex social networks [ J]. PLoS Computational Biology, 2016, 12(7): e1004928. 
[14] MADEWELL Z J, YANG Y, LONGIN Jr I M, et al. Household transmission of SARS-CoV-2: a systematic review and meta-analysis of secondary attack rate [ EB / OL] . (2020-08-01) [2024-09-14] . https:∥www. medrxiv. org / content / 10. 1101 / 2020. 07. 29. 20164590v1. 
[15] LIU P Y, MCQUARRIE L, SONG Y X, et al. Modelling the impact of household size distribution on the transmission dynamics of COVID-19[ J] . Journal of the Royal Society, Interface, 2021, 18(177) : 20210036. 
[16] WANG N, CHU T S, LI F R, et al. The role of an active surveillance strategy of targeting household and neighborhood contacts related to leprosy cases released from treatment in a low-endemic area of China[ J] . PLoS Neglected Tropical Diseases, 2020, 14(8) : e0008563. .
[17] WALLINGA J, TEUNIS P, KRETZSCHMAR M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents [ J ] . American Journal of Epidemiology, 2006, 164 (10) : 936-944.
[18] 深圳市 统 计 局. 深 圳 市 第 七 次 全 国 人 口 普 查 [ EB / OL] . ( 2021 - 05 - 17) [ 2024 - 09 - 14] . http:∥tjj. sz. gov. cn / ztzl / zt / szsdqcqgrkpc / . 
Shenzhen Statistics Bureau. The seventh national population census in Shenzhen [EB / OL]. (2021-05-17) [2024- 09-14]. http:∥tjj. sz. gov. cn / ztzl / zt / szsdqcqgrkpc / . 
[19] 深圳市统计局. 深圳统计年鉴 2020[ EB / OL] . ( 2020- 12- 31) [ 2024 - 09 - 14] . http:∥tjj. sz. gov. cn / zwgk / zfxxgkml / tjsj / tjnj / content / post_8386382. html. 
Shenzhen Statistics Bureau. Shenzhen statistical yearbook 2020[EB / OL] . (2020-12-31) [2024-09-14] . http:∥ tjj. sz. gov. cn / zwgk / zfxxgkml / tjsj / tjnj / content / post _ 838 6382. html. 
[20] 深圳 市 统 计 局. 深 圳 市 人 口 普 查 年 鉴—2020 [ EB / OL] . (2023-06-30) [2024-09-14] . http:∥tjj. sz. gov. cn / zwgk / zfxxgkml / tjsj / tjnj / content / post_10688160. html. 
Shenzhen Statistics Bureau. Shenzhen census yearbook - 2020[EB / OL] . (2023-06-30) [2024-09-14] . http:∥ tjj. sz. gov. cn / zwgk / zfxxgkml / tjsj / tjnj / content / post _ 10688160. html. 
[21] KERR C C, STUART R M, MISTRY D, et al. Covasim: an agent-based model of COVID-19 dynamics and interventions [ J ] . PLoS Computational Biology, 2021, 17 (7) : e1009149. 
[22] DU Z W, BAI Y, WANG L, et al. Optimizing COVID19 surveillance using historical electronic health records of influenza infections[ J] . PNAS Nexus, 2022, 1( 2) : pgac038. 
[23] DU Z W, PANDEY A, BAI Y, et al. Comparative costeffectiveness of SARS-CoV-2 testing strategies in the USA: a modelling study[ J] . The Lancet Public Health, 2021, 6(3) : e184-e191. 
[24] GRIJALVA C G, ROLFES M A, ZHU Y W, et al.34. 
[25] DEL ÁGUILA-MEJÍA J, WALLMANN R, CALVOMONTES J, et al. Secondary attack rate, transmission and incubation periods, and serial interval of SARS-CoV2 Omicron variant, Spain[ J] . Emerging Infectious Diseases, 2022, 28(6) : 1224-1228. 
[26] GARRETT N, TAPLEY A, ANDRIESEN J, et al. High asymptomatic carriage with the Omicron variant in South Africa[ J] . Clinical Infectious Diseases, 2022, 75 ( 1) : e289-e292. 
[27] MCEVOY D, MCALOON C, COLLINS A, et al. Relative infectiousness of asymptomatic SARS-CoV-2 infected persons compared with symptomatic individuals: a rapid scoping review[ J] . BMJ Open, 2021, 11(5) : e042354. 
[28] MANICA M, DE BELLIS A, GUZZETTA G, et al. Intrinsic generation time of the SARS-CoV-2 Omicron variant: an observational study of household transmission [ J ] . The Lancet Regional Health Europe, 2022, 19: 100446. 
[29] VYNNYCKY E, WHITE R G. An introduction to infectious disease modelling [ M] . Oxford: Oxford University Press, 2010. 
[30] HOUSE T, KEELING M J. Household structure and infectious disease transmission [ J] . Epidemiology and Infection, 2009, 137(5) : 654-661.

更新日期/Last Update: 2025-07-13