LUO P, CHEN G H, YANG D H, et al. A novel buckboost converter and its control strategy for new energy power generation[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 97-105.
[2]王燕, 杨秀媛, 徐剑锋, 等. 民用可控负荷参与需求响应的控制策略[J]. 发电技术, 2020, 41(6): 638-649.
WANG Y, YANG X Y, XU J F, et al. Control strategy of civil controllable load participating in demand response [J]. Power Generation Technology, 2020, 41(6): 638649.
[3]王明东, 杨岙迪, 李龙好, 等. 基于VSG下垂优化控制的新能源电力系统惯性提升[J]. 郑州大学学报(工学版), 2024, 45(3): 127-133.
WANG M D, YANG A D, LI L H, et al. Inertia lifting of new energy power system based on VSG droop optimal control[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 127-133.
[4]SU Y, LI H Y, CUI Y, et al. An adaptive PV frequency control strategy based on real-time inertia estimation[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 2355-2364.
[5]ZHANG J H, ZHANG B, LI Q, et al. Fast frequency regulation method for power system with two-stage photovoltaic plants[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1779-1789.
[6]RAJESH T, GUNAPRIYA B, SABARIMUTHU M, et al. Frequency control of PV-connected micro grid system using fuzzy logic controller[J]. Materials Today: Proceedings, 2021, 45: 2260-2264.
[7]VANTI S, BANA P R, D′ARCO S, et al. Single-stage grid-connected PV system with finite control set model predictive control and an improved maximum power point tracking[J]. IEEE Transactions on Sustainable Energy, 2022, 13(2): 791-802.
[8]LI Z W, CHENG Z P, SI J K, et al. Adaptive power point tracking control of PV system for primary frequency regulation of AC microgrid with high PV integration[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3129-3141.
[9]CUI W Q, JIANG Y, ZHANG B S. Reinforcement learning for optimal primary frequency control: a Lyapunov approach[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1676-1688.
[10] ZHANG Y, SHI X H, ZHANG H X, et al. Review on deep learning applications in frequency analysis and control of modern power system[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107744.
[11] ZHANG Z D, ZHANG D X, QIU R C. Deep reinforcement learning for power system applications: an overview [J]. CSEE Journal of Power and Energy Systems, 2020, 6(1): 213-225.
[12] YAN Z M, XU Y. Data-driven load frequency control for stochastic power systems: a deep reinforcement learning method with continuous action search[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1653-1656.
[13] SUN J, ZHU Z Q, LI H Q, et al. An integrated criticactor neural network for reinforcement learning with application of DERs control in grid frequency regulation[J]. International Journal of Electrical Power & Energy Systems, 2019, 111: 286-299.
[14]杨悦, 王丹, 胡博, 等. 基于改进多智能体Q学习的多源最优联合调频控制策略研究[J]. 电力系统保护与控制, 2022, 50(7): 135-144.
YANG Y, WANG D, HU B, et al. Multi-source optimal joint frequency modulation control strategy based on improved multi-agent Q-learning[J]. Power System Protection and Control, 2022, 50(7): 135-144.
[15] MU C X, TANG Y F, HE H B. Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6742-6751.
[16] CHEN X D, ZHANG M, WU Z G, et al. Model-free load frequency control of nonlinear power systems based on deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6825-6833.
[17]秦智慧, 李宁, 刘晓彤, 等. 无模型强化学习研究综述[J]. 计算机科学, 2021, 48(3): 180-187.
QIN Z H, LI N, LIU X T, et al. Overview of research on model-free reinforcement learning[J]. Computer Science, 2021, 48(3): 180-187.
[18] FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[EB/ OL]. (2018-10-22)[2024-06-09]. http:∥arxiv.org/ abs/1802.09477.
[19]赵大伟, 马进, 钱敏慧, 等. 光伏电站参与大电网一次调频的控制增益研究[J]. 电网技术, 2019, 43 (2): 425-433.
ZHAO D W, MA J, QIAN M H, et al. Research on control gain for photovoltaic power plants participating in primary frequency regulation of large power grid[J]. Power System Technology, 2019, 43(2): 425-433.
[20] KHALID J, RAMLI M A M, KHAN M S, et al. Efficient load frequency control of renewable integrated power system: a twin delayed DDPG-based deep reinforcement learning approach[J]. IEEE Access, 2022, 10: 5156151574.
[21] TANG Y H, HU W H, CAO D, et al. Deep reinforcement learning aided variable-frequency triple-phase-shift control for dual-active-bridge converter[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10506-10515.
[22] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30)[2024-06-09]. https:∥arxiv.org/abs/1412.6980.
[23] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2019-07-05) [2024-06-09]. https:∥arxiv. org/ abs/1509.02971.