[1]包腾飞,赵向宇,周喜武,等.基于 Inventor 二次开发的垫层蜗壳参数化设计[J].郑州大学学报(工学版),2025,46(04):107-113.[doi:10.13705/j.issn.1671-6833.2025.04.012]
 BAO Tengfei,ZHAO Xiangyu,ZHOU Xiwu,et al.Parametric Design of Spiral Case with Cushion Layer Based on Inventor Secondary Development[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):107-113.[doi:10.13705/j.issn.1671-6833.2025.04.012]
点击复制

基于 Inventor 二次开发的垫层蜗壳参数化设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
107-113
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Parametric Design of Spiral Case with Cushion Layer Based on Inventor Secondary Development
文章编号:
1671-6833(2025)04-0107-07
作者:
包腾飞1 赵向宇1 周喜武2 陈雨婷1 程健悦1
1. 河海大学 水利水电学院,江苏 南京 210098;2. 江苏省水利工程科技咨询股份有限公司,江苏 南京 210029
Author(s):
BAO Tengfei1 ZHAO Xiangyu1 ZHOU Xiwu2 CHEN Yuting1 CHENG Jianyue1
1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; 2. Jiangsu Province Water Engineering Sci-Tech Consulting Co. , Ltd. , Nanjing 210029, China
关键词:
BIM 技术 参数化设计 三维模型 垫层蜗壳 二次开发
Keywords:
BIM parametric design three-dimensional model spiral case with cushion layer secondary development
分类号:
TV222. 1
DOI:
10.13705/j.issn.1671-6833.2025.04.012
文献标志码:
A
摘要:
针对垫层蜗壳设计过程复杂、设计更改烦琐、结构优化效率低下等问题,基于 Inventor 平台,确定了垫层蜗壳的设计参数,研究了蜗壳的参数化建模方法。 针对参数化建模中钢衬与垫层、垫层与外围混凝土间的接触状态难以处理的问题,引入了曲面划分算法,实现了钢衬、垫层与外围混凝土的有效分割;针对蜗壳垫层与进水口垫层相交重叠问题,提出了实体接触判断算法及切割方法,实现了两者交界部位精细化处理。 实例应用结果表明:采用所提参数化设计方法,能够根据设计参数的调整快速地建立模型。 当垫层厚度变大,外包混凝土承担内水压力比例减少,最小可达 20. 16%,钢衬环向、径向位移均增大,最大可分别达到 12. 26,9. 39 mm;当垫层铺设范围变大,外包混凝土承担内水压力比例大致呈减小趋势,最小可达 23. 17%,钢衬环向、径向位移均减小,最小可分别达到4. 27,2. 06 mm。 最终选择垫层子午向包角铺设至腰线以下 15°,厚度选择 20 mm。
Abstract:
In view of the complex design process of the spiral case with cushion layer, the cumbersome nature of design changes, and the low efficiency of structure optimization, design parameters for the spiral case with cushion layer were established based on the Inventor platform, and the parametric modeling method of the spiral case was investigated. To tackle the challenge of handling contact states between the steel lining and cushion layer, as well as between the cushion layer and outer concrete during parametric modeling, a surface partitioning algorithm was introduced, enabling effective segmentation among the steel lining, cushion layer, and outer concrete. For the overlap between spiral case with cushion layer and the inlet cushion layer, an entity contact determination algorithm and cutting method were proposed, achieving refined treatment at their intersections. Case studies showed that using the proposed parametric design approach allowed for rapid model creation based on design parameter adjustments. As the thickness increased, the proportion of internal water pressure borne by the outer concrete decreased, reaching a minimum of 20. 16%, while the circumferential and radial displacements of the steel lining increased, with maximum values of 12. 26 mm and 9. 39 mm, respectively. As the laying range expanded, the proportion of internal water pressure borne by the outer concrete roughly showed a decreasing trend, with a minimum of 23. 17%, while the circumferential and radial displacements of the steel lining decreased, with minimum values of 4. 27 mm and 2. 06 mm, respectively. Ultimately, the meridional wrapping angle of the cushion layer was selected to extend 15° below the waistline, with a thickness of 20 mm.

参考文献/References:

[1] 郭涛, 张立翔, 武亮. 水电站充水保压蜗壳结构研究 和应用综述[ J] . 昆明理工大学学报( 自然科学版) , 2015, 40(3) : 70-78. 

GUO T, ZHANG L X, WU L. Advance in research and application of preload filling spiral case structure in hydroelectric power plant[ J] . Journal of Kunming University of Science and Technology (Natural Science Edition) , 2015, 40(3) : 70-78. 
[2] 王家明, 马青. 垫层埋入法蜗壳结构设计的统计分析 与研究[ J] . 人民黄河, 2021, 43(1) : 133-136. 
WANG J M, MA Q. Statistical analysis and research on structural design of spiral case with cushion embedding method[ J] . Yellow River, 2021, 43(1) : 133-136. 
[3] 付洪霞, 马震岳, 董毓新. 水电站蜗壳垫层结构研究 [ J] . 水利学报, 2003, 34(6) : 85-88, 94. 
FU H X, MA Z Y, DONG Y X. Study on structure of cushion layer for spiral case in hydropower station [ J ]. Journal of Hydraulic Engineering, 2003, 34 ( 6 ): 85 - 88, 94. 
[4] 陈桂香, 徐晨, 张文萃, 等. 基于 BIM 技术的通用管片 精细化建模及应用[J]. 施工技术, 2019, 48(4): 76-80. 
CHEN G X, XU C, ZHANG W C, et al. Application and fine modeling of general segment based on BIM technology [J]. Construction Technology, 2019, 48(4): 76-80. 
[5] 龚健, 包腾飞, 陈知渊, 等. 基于 BIM 技术的地下空 间曲线钢管分段排布算法[ J] . 水利水电科技进展, 2022, 42(5) : 108-114, 126. 
GONG J, BAO T F, CHEN Z Y, et al. A BIM technology-based algorithm for steel pipe segmentation arrangement of underground space curves[ J] . Advances in Science and Technology of Water Resources, 2022, 42(5) : 108-114, 126. 
[6] 叶越胜, 吴佩, 陈孝哲. 三维激光扫描与 BIM 技术在 盾构隧道施工中的融合应用[ J] . 广东土木与建筑, 2021, 28(2) : 9-12. 
YE Y S, WU P, CHEN X Z. Application of 3D laser scanning and BIM technology in the construction of shield tunnel [ J ] . Guangdong Architecture Civil Engineering, 2021, 28(2) : 9-12. 
[7] 张爱梅, 吴卫卫, 李林岩, 等. 基于 Inventor 的变压器 工程图自动绘制系统开发[ J] . 郑州大学学报( 工学 版) , 2013, 34(1) : 91-94. 
ZHANG A M, WU W W, LI L Y, et al. System development of the automatic drawing about transformers based on inventor[ J] . Journal of Zhengzhou University (Engineering Science) , 2013, 34(1) : 91-94. 
[8] 左鹏程, 屈波, 花港, 等. 水泵水轮机全椭圆蜗壳的 设计与 CFD 分析[ J] . 水电能源科学, 2023, 41( 3) : 172-175, 185. 
ZUO P C, QU B, HUA G, et al. Design of fully elliptical volute for pump turbines with CFD analysis[ J] . Water Resources and Power, 2023, 41(3) : 172-175, 185. 
[9] 刘厚林, 华旭辉, 马皓晨, 等. 蜗壳断面面积变化规 律对离 心 泵 性 能 的 影 响 [ J] . 中 国 农 村 水 利 水 电, 2022(3) : 163-167, 173. 
LIU H L, HUA X H, MA H C, et al. The influence of volute section area variation on centrifugal pump performance [ J ] . China Rural Water and Hydropower, 2022 (3) : 163-167, 173. 
[10] 刘奕 炜, 陈 铭 轩, 牛 志 伟, 等. 基 于 Dynamo 和 Advance Steel 的水轮机蜗壳快速设计方法[ J] . 水力发 电, 2023, 49(9) : 62-68. 
LIU Y W, CHEN M X, NIU Z W, et al. Rapid design method of spiral case of hydro turbine based on Dynamo and Advance Steel[J]. Water Power, 2023, 49(9): 62-68. 
[11] 李端阳, 刘晶, 田新星. GC 在水电站厂房蜗壳三维参 数化建模设计中的应用研究[ J] . 水利水电工程设计, 2013, 32(4) : 18-20, 23, 56. 
LI D Y, LIU J, TIAN X X. Application of generative components ( GC ) in tree-dimensional parameterization modeling design of powerhouse spiral case[ J] . Design of Water Resources & Hydroelectric Engineering, 2013, 32 (4) : 18-20, 23, 56. 
[12] 陈靖芯, 徐晶, 陆国民, 等. 基于 CATIA 的三维参数化 建模方法及其应用[J]. 机械设计, 2003, 20(8): 48-50. 
CHEN J X, XU J, LU G M, et al. Three dimensional parametric modeling method based on CATIA and its application [J]. Journal of Machine Design, 2003, 20(8): 48-50. 
[13] 张力丹, 赖喜德, 王强磊. 垫层蜗壳钢衬-混凝土结构 接触数 值 仿 真 分 析 [ J] . 中 国 农 村 水 利 水 电, 2019 (7) : 148-153, 160. 
ZHANG L D, LAI X D, WANG Q L. Numerical simulation analysis of contact between steel lining and concrete structure of cushion volute [ J] . China Rural Water and Hydropower, 2019(7) : 148-153, 160. 
[14] 安学民. 高水头电站垫层式蜗壳结构特性分析研究 [D] . 西安: 西安理工大学, 2009. 
AN X M. Research on the structure of spiral case using cushion layer in high-head hydropower station [ D] . Xi’ an: Xi’ an University of Technology, 2009.
[15] 国家能源局. 水电站厂房设计规范: NB 35011—2016 [ S] . 北京: 中国水利水电出版社, 2016. 
National Energy Bureau of the People′s Republic of China. Design code for powerhouses of hydropower stations: NB 35011—2016 [ S ] . Beijing: China Water & Power Press, 2016.

更新日期/Last Update: 2025-07-13