[1]张延军,孙铭浩,于子望,等.松辽盆地干热岩热储水力压裂参数敏感性分析[J].郑州大学学报(工学版),2024,45(pre1):1-7.[doi:10.13705/j.issn.1671-6833.2025.04.009]
 ZHANG Yanjun*,SUN Minghao,YU Ziwang,et al.Sensitivity Analysis of Hydraulic Fracturing Parameters of the Hot Dry Rock Reservoir in the Songliao Basin[J].Journal of Zhengzhou University (Engineering Scien,2024,45(pre1):1-7.[doi:10.13705/j.issn.1671-6833.2025.04.009]
点击复制

松辽盆地干热岩热储水力压裂参数敏感性分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年pre1
页码:
1-7
栏目:
出版日期:
2026-01-30

文章信息/Info

Title:
Sensitivity Analysis of Hydraulic Fracturing Parameters of the Hot Dry Rock Reservoir in the Songliao Basin
作者:
张延军12孙铭浩1于子望1刘玉龙1
1.吉林大学 建设工程学院,吉林 长春130026;2.地下水资源与环境教育部重点实验室(吉林大学),吉林 长春130026
Author(s):
ZHANG Yanjun12* SUN Minghao1 YU Ziwang1 LIU Yulong1
1. College of Construction Engineering, Jilin University, Changchun 130026, China; 2. Key Lab of Groundwater Resource and Environment (Jilin University), Ministry of Education, Changchun 130026, China
关键词:
干热岩水力压裂数值模拟敏感性分析有限元
Keywords:
hot dry rock hydraulic fracturing numerical simulation sensitivity analysis finite element
分类号:
P314TK529
DOI:
10.13705/j.issn.1671-6833.2025.04.009
文献标志码:
A
摘要:
水力压裂是提取地热能的关键技术,通过提高储层岩石的渗透性来增加产热量。本文以松辽盆地干热岩热储层为研究对象,基于Abaqus软件建立水力压裂二维数值模型,结合正交试验法,对影响水力裂缝特性的参数进行了敏感性分析。结果表明:(1)数值模拟结果与室内试验结果的误差为2.6%,说明该模型用来研究水力压裂是准确可靠的。(2)通过极差分析法对各参数进行敏感性分析可知,对裂缝宽度影响最大的因素是岩石弹性模量,压裂液排量的影响程度最小;对起裂压力影响最大的因素为水平应力差异系数,岩石弹性模量的影响程度最小。该研究结果可以为松辽盆地干热岩储层水力压裂施工提供一定的指导。
Abstract:
Hydraulic fracturing is the key technology for extracting geothermal energy, which increases the heat production by improving the permeability of the reservoir rock. In this paper, the hot dry rock thermal reservoir in Songliao Basin is taken as the research object, and a two-dimensional numerical model of hydraulic fracturing is established based on Abaqus software, and the sensitivity analysis of the parameters affecting the characteristics of hydraulic fracture is carried out by combining the orthogonal test method. The results showed that: (1) The discrepancy between the numerical simulation results and the laboratory test results was 2.6%, indicating that the model was accurate and reliable for studying hydraulic fracturing. (2) The sensitivity analysis of each parameter through the extreme difference analysis method showed that the most influential factor on the fracture width was the elastic modulus of the rock, and the fracturing fluid displacement had a minimal impact; the most influential factor on the fracture initiation pressure was the horizontal stress difference coefficient, and the elastic modulus of the rock had a minimal impact. The results of this study can provide certain guidance for hydraulic fracturing operations of the hot dry rock reservoir in the Songliao Basin

参考文献/References:

[1].GONG F C, GUO T K, SUN W, et al. Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with Multiple Fracturing Horizontal Wells (MFHW)[J]. Renewable Energy, 2020, 151: 1339-1351.
[2].MA W W, YANG C, AHMED S F, et al. Effects of thermophysical parameters of fracturing fluid on hot dry rock damage in hydraulic fracturing[J]. Geomechanics for Energy and the Environment, 2022, 32: 100405.
[3].李根生,武晓光,宋先知,等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报, 2022, 7(03): 343-364.
[4].LI G S, WU X G, SONG X Z, et al. Status and challenges of hot dry rock geothermal resource exploitation[J]. Petroleum Science Bulletin, 2022, 7(03): 343-364.
[5].许天福,张延军,于子望,等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39.
[6].XU T F, ZHANG Y J, YU Z W, et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science & Technology Review, 2015, 33(19): 35-39.
[7].郭亮亮. 增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D]. 长春:吉林大学,2016.
[8].GUO L L. Test and model research of hydraulic fracturing and reservoir damage evolution in Enhanced Geothermal System[D]. Changchun: Jilin University, 2016.
[9].GUO T K, HAO T, CHEN M, et al. Numerical simulation on Geothermal extraction by radial well assisted hydraulic fracturing[J]. Renewable Energy, 2023, 210: 440-450.
[10].ZHUANG D D, YIN T B, LI Q, et al. Fractal fracture toughness measurements of heat-treated granite using hydraulic fracturing under different injection flow rates[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103340.
[11].LIU Y L, XU T F, YUAN Y L, et al. A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110278.
[12].HUBBERT M K, WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of the Aime, 1957, 210(01): 153-168.
[13].王永亮,张辛,朱天赐,等. 水力压裂解析模型裂缝扩展参数敏感性分析[J]. 力学季刊, 2021, 42(02): 263-271.
[14].WANG Y L, ZHANG X, ZHU T C, et al. Sensitivity analysis for controlling parameters of fracture propagation in hydrofracturing based on analytical models[J]. Chinese Quarterly of Mechanics, 2021, 42(02): 263-271.
[15].周舟,金衍,曾义金,等. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 2019, 49(05): 1425-1430.
[16].ZHOU Z, JIN Y, ZENG Y J, et al. Experimental study on hydraulic fracturing physics simulation, crack initiation and propagation in hot dry rock geothermal reservoir in Gonghe Basin, Qinghai[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(05): 1425-1430.
[17].ZHANG Y J, MA Y Q, HU Z J, et al. An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite[J]. Renewable Energy, 2019, 140: 615-624.
[18].ESFANDIARI M, PAK A. XFEM modeling of the effect of in-situ stresses on hydraulic fracture characteristics and comparison with KGD and PKN models[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(1): 185-201.
[19].贾善坡,林建品,刘团辉,等. 温度作用下岩石热弹塑性模型及其数值模拟[J].郑州大学学报(工学版), 2015, 36(02): 52-56.
[20].JIA S P, LIN J P, LIU T H, et al. A thermo-elasto-plastic constitutive model of the rock under the temperature effect and its numerical implementation[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(02): 52-56.
[21].龚迪光,曲占庆,李建雄,等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学, 2016, 37(05): 1512-1520.
[22].GONG D G, QU Z Q, LI J X, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 2016, 37(05): 1512-1520.
[23].刘金龙. 基于ABAQUS平台的水力压裂裂缝扩展模拟研究[D]. 西安:西安石油大学,2020.
[24].LIU J L. Simulation study on fracture propagation of hydraulic fracturing based on ABAQUS platform[D]. Xian: Xi’an Shiyou University, 2020.
[25].王小龙. 扩展有限元法应用于页岩气藏水力压裂数值模拟研究[D]. 合肥:中国科学技术大学,2017.
[26].WANG X L. Numerical simulation of hydraulic fracturing in shale gas reservoirs based on the extended finite element method[D]. Hefei: University of Science and Technology of China, 2017.
[27].谢洋洋. 吉林松原中深层地热供暖潜力及模型研究[D]. 长春:吉林大学,2019.
[28].XIE Yangyang. Research on medium-deep geothermal heating potential and model assessment in Songyuan, Jilin[D]. Changchun: Jilin University, 2019.
[29].雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 吉林大学2020.
[30].LEI Zhihong. Study on the characteristics of hot dry rock reservoir and fracturing test model in the Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020.

更新日期/Last Update: 2025-02-27