[1]郭歆莹,等.RIS辅助无人机通信系统波束赋形双重循环优化算法[J].郑州大学学报(工学版),2025,46(02):67-74.[doi:10.13705/j.issn.1671-6833.2025.02.005]
 GUO Xinying,,et al.Beamforming Dual-loop Optimization Algorithm for RIS-assisted UAV Communication Systems[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):67-74.[doi:10.13705/j.issn.1671-6833.2025.02.005]
点击复制

RIS辅助无人机通信系统波束赋形双重循环优化算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
67-74
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Beamforming Dual-loop Optimization Algorithm for RIS-assisted UAV Communication Systems
文章编号:
1671-6833(2025)02-0067-08
作者:
郭歆莹1 2 3 刘龙飞1 2 3 朱春华1 2 3
1.河南工业大学 粮食信息处理与控制教育部重点实验室,河南 郑州 450001;2.河南工业大学 河南省粮食光电探测与控制重点实验室,河南 郑州 450001;3.河南工业大学 信息科学与工程学院,河南 郑州 450001
Author(s):
GUO Xinying1 2 3 LIU Longfei1 2 3 ZHU Chunhua1 2 3
1.key Laboratory of Grain Information Processing and Control of Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; 2.Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China; 3.College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
关键词:
无人机 可重构智能表面 波束赋形 分式规划 流形优化
Keywords:
UAV RIS beamforming fractional programming manifold optimization
分类号:
TN929.5
DOI:
10.13705/j.issn.1671-6833.2025.02.005
文献标志码:
A
摘要:
为提高复杂城市环境中无人机(UAV)集成可重构智能表面(RIS)构成的RIS-UAV中继通信系统的频谱效率,研究了定轨迹RIS-UAV中继通信系统的最大化系统下行和速率问题,构建了一个联合主被动波束赋形的多变量非凸优化问题。为了解决该问题,设计了一种基于分式规划(FP)的流形优化的低复杂度交替优化双重循环算法。首先,通过FP算法将问题化简;其次,利用标准凸优化算法设计基站主动波束赋形,利用流形优化算法设计RIS被动波束赋形;最后,通过内外双重循环交替迭代优化直至收敛。仿真结果表明:所提算法与经典方案对比具有较好的收敛性和较低的复杂度,且在最大发射功率为20 dBm时,和速率比随机相位方案实现大约6 dB的增益。此外,RIS采用3 bit离散相移时系统和速率性能与连续相移近似。
Abstract:
In order to enhance the spectrum efficiency of the RIS-UAV relay communication system formed by integrating UAV and RIS in complex urban environments, research was conducted to explore the optimization of maximizing system downlink sum rate of RIS-UAV relay communication system with fixed trajectory, and a multi-variable non-convex optimization problem of joint active and passive beamforming was constructed. To address this, a lowcomplexity AO dual-loop algorithm based on FP and manifold optimization was designed. Firstly, it was simplified by using the FP algorithm. Secondly, followed by the design of the base station′s active beamforming by using standard convex optimization algorithms, and the design of the RIS′s passive beamforming by using manifold optimization algorithms. Finally, the alternating iterative optimization through the dual internal and external loops continues until convergence is achieved. Simulation results demonstrated that the proposed algorithm had better convergence and lower complexity compared to classical schemes. Moreover, at a maximum transmission power of 20 dBm, the sum rate achieved approximately 6 dB gain over the random phase scheme. Additionally, when the RIS employed 3 bit discrete phase shift, the system′s sum rate performance was nearly equivalent to that with continuous phase shift.

参考文献/References:

[1]CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44 (3): 781-789. 

[2]陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781-789. 
CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44 (3): 781-789. 
[3]樊娇, 雷涛, 韩伟, 等. 无人机航迹规划技术研究综述[J]. 郑州大学学报(工学版), 2021, 42(3): 39-46. 
FAN J, LEI T, HAN W, et al. A survey of UAV path planning[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(3): 39-46. 
[4]PANG X W, SHENG M, ZHAO N, et al. When UAV meets IRS: expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28 (5): 164-170. 
[5]RAHMATOV N, BAEK H. RIS-carried UAV communication: current research, challenges, and future trends [J]. ICT Express, 2023, 9(5): 961-973. 
[6]LONG H, CHEN M, YANG Z H, et al. Joint trajectory and passive beamforming design for secure UAV networks with RIS[C]∥2020 IEEE Globecom Workshops (GC Wkshps. Piscataway: IEEE, 2020: 1-6. 
[7]PENG H R, WANG L C. Energy harvesting reconfigurable intelligent surface for UAV based on robust deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6826-6838. 
[8]SUN W X, XU Z R, ZHU M K, et al. Achievable rate maximization for RIS-UAV assisted vehicular communication network[C]∥The 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway: IEEE, 2023: 306-310. 
[9]CUI M, ZHANG G C, ZHANG R. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410-1414. 
[10] ELMOSSALLAMY M A, SEDDIK K G, CHEN W, et al. RIS optimization on the complex circle manifold for interference mitigation in interference channels[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6184-6189.
[11] GUO H Y, LIANG Y C, CHEN J, et al. Weighted sumrate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064-3076. 
[12] SHANG B D, BENTLEY E S, LIU L J. UAV swarm-enabled aerial reconfigurable intelligent surface: modeling, analysis, and optimization[J]. IEEE Transactions on Communications, 2023, 71(6): 3621-3636. 
[13]刘志新, 赵松晗, 杨毅, 等. 智能反射面辅助的无人机无线携能通信网络吞吐量最大化算法研究[J]. 电子与信息学报, 2022, 44(7): 2325-2331. 
LIU Z X, ZHAO S H, YANG Y, et al. Throughput maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2325-2331. 
[14] LI S, DU H Q, ZHANG D Y, et al. Joint UAV trajectory and beamforming designs for RIS-assisted MIMO system [J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5378-5392. 
[15]WU Q Q, ZHANG R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838-1851. 
[16] SHEN K M, YU W. Fractional programming for communication systems—part Ⅱ: uplink scheduling via matching[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2631-2644. 
[17] SHEN K M, YU W. Fractional programming for communication systems—part Ⅰ: power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616-2630. 
[18]戈忠义, 岳殿武, 李光辉, 等. 智能反射面辅助的毫米波MIMO系统波束成形设计[J]. 电讯技术, 2023, 63(1): 7-13. 
GE Z Y, YUE D W, LI G H, et al. Beamforming design of millimeter wave MIMO system assisted by intelligent reflecting surface[J]. Telecommunication Engineering, 2023, 63(1): 7-13. 
[19] ABSIL P A, MAHONY R, SEPULCHRE R. Optimization algorithms on matrix manifolds[M]. Princeton: Princeton University Press, 2008. 
[20] REN Y Q, ZHOU R Y, TENG X K, et al. On deployment position of RIS in wireless communication systems: analysis and experimental results[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1756-1760.

相似文献/References:

[1]刘广瑞,王庆海,姚冬艳.基于改进人工蜂群算法的多无人机协同任务规划[J].郑州大学学报(工学版),2018,39(03):51.[doi:10.13705/j.issn.1671-6833.2017.06.026]
 Liu Guangrui,Wang Qinghai,Yao Dongyan.Multi-UAV Cooperative Mission Planning Based on Improved Artificial Bee Colony Algorithm[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):51.[doi:10.13705/j.issn.1671-6833.2017.06.026]
[2]闫怡汝,王寅.基于鸽群优化的复杂环境下无人机侦查航迹优化 [J].郑州大学学报(工学版),2019,40(04):3.[doi:10.13705/j.issn.1671-6833.2019.04.016]
 Yan Yiru,Wang Yin. undefined Pigeon-inspired Optimization Based Trajectory Planning Methodfor UAVs in a Complex Urban Environment [J].Journal of Zhengzhou University (Engineering Science),2019,40(02):3.[doi:10.13705/j.issn.1671-6833.2019.04.016]
[3]余松森,龙嘉濠,周 诺,等.基于相机运动轨迹的鲁棒无人机航拍稳像算法[J].郑州大学学报(工学版),2024,45(05):77.[doi:10.13705/j.issn.1671-6833.2024.02.004]
 YU Songsen,LONG Jiahao,ZHOU Nuo,et al.Robust Algorithm for Aerial Video Stabilization of UAV Based onCamera Motion Trajectory[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):77.[doi:10.13705/j.issn.1671-6833.2024.02.004]
[4]王 峰,马星宇,孟鹏帅,等.基于深度强化学习的无人机边缘计算任务卸载策略[J].郑州大学学报(工学版),2024,45(pre1):10.[doi:10.13705/j.issn.1671-6833.2025.01.018]
 WANG Feng,MA Xingyu,MENG Pengshuai,et al.Task Offloading Strategy of UAV Edge Computing Based on Deep Reinforcement Learning[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):10.[doi:10.13705/j.issn.1671-6833.2025.01.018]

更新日期/Last Update: 2025-03-13