[1]KONG F S, KIM H D, JIN Y Z. Computational study of supersonic chevron ejector flows[J]. Journal of the Korean Society of Propulsion Engineers, 2013, 17(6): 89-96. [2]NAKAGAWA M, MARASIGAN A R, MATSUKAWA T, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger[J]. International Journal of Refrigeration, 2011, 34(7): 1604-1613.
[3]SICURO B H B, MALATESTA V, PAPA R. Numerical investigation of supersonic air-to-air ejectors including design effects on entrainment efficiency[J]. Journol of Fluids Engineering, 2023, 145(1):011203.
[4]史海路, 刘华东, 魏新利, 等. 喷嘴距对喷射器及双蒸发压缩/喷射制冷系统性能的影响研究[J]. 高校化学工程学报, 2019, 33(2): 321-328.
SHI H L, LIU H D, WEI X L, et al. Effects of nozzle exit position on the performance of ejector and bi-evaporator compression/ejection refrigeration system[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 321-328.
[5]刘华东, 靳朝阳, 王定标, 等. 旁路结构对亚临界喷射器引射效率的影响[J]. 郑州大学学报(工学版), 2023, 44(6): 48-53.
LIU H D, JIN Z Y, WANG D B, et al. Influence analysis of bypass structure on entrainment ratio of subcritical ejector[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 48-53.
[6]BANU J P, MANI A. Numerical studies on ejector with swirl generator[J]. International Journal of Thermal Sciences, 2019, 137: 589-600.
[7]DUAN D L, GE H T, XI X Z, et al. Performance and mixing process investigation of a novel mixing-enhanced ejector [J]. Sustainable Energy Technologies and Assessments, 2023, 58:103322.
[8]姚轶智, 代玉强, 张博文, 等. 动量增强型喷射器性能实验与分析[J]. 化工进展, 2019, 38(10): 4489-4496.
YAO Y Z, DAI Y Q, ZHANG B W, et al. Performance experiment and analysis of momentum-enhanced ejector [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4489-4496.
[9]王定标, 王帅, 张浩然, 等. 流体拓扑优化的方法及应用综述[J]. 郑州大学学报(工学版), 2023, 44 (2): 1-13.
WANG D B, WANG S, ZHANG H R, et al. A review of methods and applications for fluid topology optimization [J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 1-13.
[10] KONTOLEONTOS E A, PAPOUTSIS-KIACHAGIAS E M, ZYMARIS A S, et al. Adjoint-based constrained topology optimization for viscous flows, including heat transfer[J]. Engineering Optimization, 2013,45(8): 941-961.
[11] DILGEN C B, DILGEN S B, FUHRMAN D R, et al. Topology optimization of turbulent flows[J]. Mechanics and Engineering, 2018, 331: 363-393.
[12] YOON G H. Topology optimization method with finite elements based on the k-ε turbulence model[J]. 2020, 361:112784.
[13] ZHAO X, ZHOU M D, LIU Y C, et al. Topology optimization of channel cooling structures considering thermomechanical behavior[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 613-632.
[14] CAI H W, GUO K, LIU H, et al. Derivative-free levelset-based multi-objective topology optimization of flow channel designs using lattice Boltzmann method[J]. Chemical Engineering Science, 2020, 231:116323.
[15] JOO Y, LEE I, KIM S J. Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 32-40.
[16]WANG D B, WU Q T, WANG G H, et al. Experimental and numerical study of plate heat exchanger based on topology optimization[J]. International Journal of Thermal Science, 2024, 195:108659.
[17]王定标, 李昂, 吴淇涛, 等. 电子元件散热结构的拓扑优化设计[J]. 低温与超导, 2023, 51(5): 37-42.
WANG D B, LI H, WU Q T, et al. Topology optimization design of heat dissipation structure of electronic components[J]. Cryogenics/ Refrigeration, 2023, 51(5): 37-42.
[18]裴元帅, 王定标, 王晓亮, 等. 基于拓扑优化的风冷热沉研究[J]. 机械工程学报, 2020, 56(16): 91-97.
PEI Y S, WANG D B, WANG X L, et al. Research on air-cooled heat sink based on topology optimization[J]. Journal of Mechanical Engineering, 2020, 56(16): 9197.
[19] SALIM I Z, JASSIM N A. Supersonic nozzle location in steam ejector effect on the mass fraction and vacuum of second fluid[J]. International Journal of Heat and Technology, 2023, 41(5): 1121-1128.
[20] CHONG D T, HU M Q, CHEN W X, et al. Experimental and numerical analysis of supersonic air ejector[J]. Applied Energy, 2014, 130: 679-684.
[21] SEOK L J, HA M Y. Study on the aero-thermal topology optimization of single- and multi-fin shapes under two-dimensional external flow conditions[J]. Korean Society of Computational Fluids Engineering, 2018, 4(23): 74-83.
[22] HAJDUK K W, ROBINSOM J C, SADOWSKI W. Robustness of regularity for the 3D convective BrinkmanForchheimer equations [J]. Journal of Mathematical Analysis and Applications, 2021, 500(1): 125058.
[23]高伟, 张立茹, 姚慧龙, 等. 基于动网格技术水平轴风力机叶片及尾迹流场旋涡特性[J]. 排灌机械工程学报, 2023, 41(2): 172-178.
GAO W, ZHANG L R, YAO H L, et al. Vortex characteristics of horizontal axis wind turbine blade and wake flow field based on dynamic mesh[J]. Journal of Drainage and Irrigation Machinery Engineering, 2023, 41(2): 172-178.
[24]刘波, 侯为民, 项效镕. 高空低雷诺数二维抗分离叶型研究[J]. 西北工业大学学报, 2008, 26(6): 703-706.
LIU B, HOU W M, XIANG X R, et al. Exploring new ideas and new methods in 2D fan/compressor cascade profile optimization design for low Reynolds number and high altitude[J]. Journal of Northwestern Polytechnical University, 2008, 26(6): 703-706.
[25]孙翀, 田甜, 竺晓程, 等. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56 (1): 45-52.
SUN C, TIAN T, ZHU X C, et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 45-52.