ZHANG D J, XIAO Q. A new method of wind speed prediction based on complex network[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 90-96.
[2]CHEN G G, TANG B R, ZENG X J, et al. Short-term wind speed forecasting based on long short-term memory and improved BP neural network[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107365.
[3]DE MATTOS NETO P S G, DE OLIVEIRA J F L, DE OSANTOS JÚNIOR D S, et al. An adaptive hybrid system using deep learning for wind speed forecasting[J]. Information Sciences: an International Journal, 2021, 581(C): 495-514.
[4]DAYAL K K, BELLON G, CATER J E, et al. High-resolution mesoscale wind-resource assessment of Fiji using the weather research and forecasting (WRF) model[J]. Energy, 2021, 232: 121047.
[5]叶小岭, 顾荣, 邓华, 等. 基于WRF模式和PSO-LSSVM的风电场短期风速订正[J]. 电力系统保护与控制, 2017, 45(22): 48-54.
YE X L, GU R, DENG H, et al. Modification technology research of short-term wind speed in wind farm based on WRF model and PSO-LSSVM method[J]. Power System Protection and Control, 2017, 45(22): 48-54.
[6]YANG D Z, WANG W T, HONG T. A historical weather forecast dataset from the european centre for mediumrange weather forecasts (ECMWF) for energy forecasting [J]. Solar Energy, 2022, 232: 263-274.
[7]姜言, 黄国庆, 彭新艳, 等. 基于GARCH的短时风速预测方法[J]. 西南交通大学学报, 2016, 51(4): 663-669, 742.
JIANG Y, HUANG G Q, PENG X Y, et al. Method of short-term wind speed forecasting based on generalized autoregressive conditional heteroscedasticity model[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 663-669, 742.
[8]WANG Y R, WANG D C, TANG Y. Clustered hybrid wind power prediction model based on ARMA, PSOSVM, and clustering methods[J]. IEEE Access, 2020, 8: 17071-17079.
[9]张金良, 刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制, 2022, 50(22): 49-58.
ZHANG J L, LIU Z Y. Ultra short term wind speed interval prediction based on a hybrid model[J]. Power System Protection and Control, 2022, 50(22): 49-58.
[10]朱昶胜, 李岁寒. 基于改进果蝇优化算法的随机森林回归模型及其在风速预测中的应用[J]. 兰州理工大学学报, 2021, 47(4): 83-90.
ZHU C S, LI S H. Random forest regression model based on improved fruit fly optimization algorithm and its application in wind speed forecasting[J]. Journal of Lanzhou University of Technology, 2021, 47(4): 83-90.
[11]孙川永, 彭友兵, 刘志亮, 等. 梯度提升树算法在陕北风电场短期风电功率预测中的应用[J]. 电网与清洁能源, 2022, 38(4): 124-128, 134.
SUN C Y, PENG Y B, LIU Z L, et al. Short-term wind power prediction of the wind farm in northern Shaanxi based on gradient boosting decision tree[J]. Power System and Clean Energy, 2022, 38(4): 124-128, 134.
[12]柏丹丹, 和敬涵, 王小君, 等. 自适应粒子群支持向量机风速组合预测模型[J]. 太阳能学报, 2015, 36 (4): 792-797.
BAI D D, HE J H, WANG X J, et al. Combination model for forecasting wind speed based on adaptive PSO-SVM [J]. Acta Energiae Solaris Sinica, 2015, 36(4): 792-797.
[13] TIAN Z D, CHEN H. A novel decomposition-ensemble prediction model for ultra-short-term wind speed[J]. Energy Conversion and Management, 2021, 248: 114775.
[14]冯义, 刘慧文, 张宝平, 等. 基于集合经验模态分解和特征选择极端学习机的风速预测[J]. 智慧电力, 2018, 46(12): 30-37.
FENG Y, LIU H W, ZHANG B P, et al. Short-term wind speed forecasting using ensemble empirical mode decomposition and extreme learning machine with feature selection[J]. Smart Power, 2018, 46(12): 30-37.
[15] XIONG D Z, FU W L, WANG K, et al. A blended approach incorporating TVFEMD, PSR, NNCT-based multimodel fusion and hierarchy-based merged optimization algorithm for multi-step wind speed prediction[J]. Energy Conversion and Management, 2021, 230: 113680.
[16] ZHAO Z N, YUN S N, JIA L Y, et al. Hybrid VMD-CNNGRU-based model for short-term forecasting of wind power considering spatio-temporal features[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105982.
[17] ZHONG C T, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[18] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[19] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95 (C): 51-67.
[20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[21]王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48 (11): 45-52.
WANG J, LI X, ZHOU X D, et al. Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power System Protection and Control, 2020, 48(11): 45-52.
[22]张文煜, 马可可, 郭振海, 等. 基于灰狼算法和极限学习机的风速多步预测[J]. 郑州大学学报(工学版), 2024, 45(2): 89-96.
ZHANG W Y, MA K K, GUO Z H, et al. Multistep prediction of wind speed based on grey wolf algorithm and extreme learning machine[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 89-96.
[23]张俱珲, 孟建军, 李德仓, 等. 基于SSA-BP的铁路沿线风速预测方法[J]. 计算机仿真, 2023, 40(12): 209-212, 260.
ZHANG J H, MENG J J, LI D C, et al. A method for predicting wind speed along railway lines based on SSABP[J]. Computer Simulation, 2023, 40(12): 209212, 260.
[24]田崇翼, 王学睿, 王瑞琪. 基于CEEMD-SVM的风速混合预测模型研究[J]. 计算机时代, 2023(7): 24-28.
TIAN C Y, WANG X R, WANG R Q. Research on hybrid wind speed prediction model based on CEEMD-SVM [J]. Computer Era, 2023(7): 24-28.