[1]贾世会,刘立夫,迟晓妮,等.基于BWO和WOA的VMD-LSTM短期风速预测[J].郑州大学学报(工学版),2025,46(03):59-66.[doi:10.13705/j.issn.1671-6833.2024.06.014]
 JIA Shihui,LIU Lifu,CHI Xiaoni,et al.VMD-LSTM Short-term Wind Speed Prediction Model Based on BWO and WOA[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):59-66.[doi:10.13705/j.issn.1671-6833.2024.06.014]
点击复制

基于BWO和WOA的VMD-LSTM短期风速预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
59-66
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
VMD-LSTM Short-term Wind Speed Prediction Model Based on BWO and WOA
文章编号:
1671-6833(2025)03-0059-08
作者:
贾世会12 刘立夫1 迟晓妮23 李高西4
1.武汉科技大学 理学院, 湖北 武汉 430081;2.武汉科技大学 冶金工业过程系统科学湖北省重点实验室, 湖北 武汉 430081;3.桂林电子科技大学 数学与计算机科学学院, 广西 桂林 541004;4.重庆工商大学 数学与统计学院,重庆 400067
Author(s):
JIA Shihui12 LIU Lifu1 CHI Xiaoni23 LI Gaoxi4
1.College of Science,Wuhan University of Science and Technology, Wuhan 430081, China; 2.Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China; 3.School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China; 4.School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067,China
关键词:
白鲸优化算法 鲸鱼优化算法 变分模态分解 LSTM 风速预测
Keywords:
beluga whale optimization whale optimization algorithm variational mode decomposition LSTM wind speed prediction
分类号:
TP391
DOI:
10.13705/j.issn.1671-6833.2024.06.014
文献标志码:
A
摘要:
针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到分解的子序列;其次,对于LSTM中的隐含层节点数、最大训练次数和初始学习率等参数,使用鲸鱼优化算法进行确定;最后,利用LSTM的非线性拟合能力对数据进行预测。结果表明:所提预测模型在测试集上的RMSE、MAE、MAPE分别为0.223 4,0.172 7,0.083 7,均低于其他对比模型,验证了所提模型在短期风速预测问题上的有效性。
Abstract:
In view of the power fluctuation and randomness existing in the operation of wind turbine networks, to improve the accuracy of wind speed prediction and the stability of wind turbine operation, in this study a VMDLSTM short-term wind speed prediction model was proposed based on the beluga whale optimization and the whale optimization algorithm. Firstly, the Beluga optimization algorithm was used to optimize the number of modes and penalty factors in VMD to obtain the reorganized subsequence. For parameters such as the number of hidden layer nodes, the maximum number of training generations, and the initial learning rate in LSTM, the whale optimization algorithm was used to determine these parameters. Finally, the monomer transplantation ability of LSTM was utilized to predict the data. The results indicated that the VMD-LSTM prediction model based on BWO and WOA proposed in this study achieved RMSE, MAE, and MAPE values of 0.223 4, 0.172 7, and 0.083 7, respectively, on the test set, all of which were lower than those of other comparative models. This validated the effectiveness of the proposed model in short-term wind speed prediction.

参考文献/References:

[1]张董极, 肖琴. 基于复杂网络的风速预测新方法[J]. 太阳能学报, 2023, 44(3): 90-96. 

ZHANG D J, XIAO Q. A new method of wind speed prediction based on complex network[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 90-96. 
[2]CHEN G G, TANG B R, ZENG X J, et al. Short-term wind speed forecasting based on long short-term memory and improved BP neural network[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107365. 
[3]DE MATTOS NETO P S G, DE OLIVEIRA J F L, DE OSANTOS JÚNIOR D S, et al. An adaptive hybrid system using deep learning for wind speed forecasting[J]. Information Sciences: an International Journal, 2021, 581(C): 495-514. 
[4]DAYAL K K, BELLON G, CATER J E, et al. High-resolution mesoscale wind-resource assessment of Fiji using the weather research and forecasting (WRF) model[J]. Energy, 2021, 232: 121047. 
[5]叶小岭, 顾荣, 邓华, 等. 基于WRF模式和PSO-LSSVM的风电场短期风速订正[J]. 电力系统保护与控制, 2017, 45(22): 48-54. 
YE X L, GU R, DENG H, et al. Modification technology research of short-term wind speed in wind farm based on WRF model and PSO-LSSVM method[J]. Power System Protection and Control, 2017, 45(22): 48-54. 
[6]YANG D Z, WANG W T, HONG T. A historical weather forecast dataset from the european centre for mediumrange weather forecasts (ECMWF) for energy forecasting [J]. Solar Energy, 2022, 232: 263-274. 
[7]姜言, 黄国庆, 彭新艳, 等. 基于GARCH的短时风速预测方法[J]. 西南交通大学学报, 2016, 51(4): 663-669, 742. 
JIANG Y, HUANG G Q, PENG X Y, et al. Method of short-term wind speed forecasting based on generalized autoregressive conditional heteroscedasticity model[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 663-669, 742. 
[8]WANG Y R, WANG D C, TANG Y. Clustered hybrid wind power prediction model based on ARMA, PSOSVM, and clustering methods[J]. IEEE Access, 2020, 8: 17071-17079. 
[9]张金良, 刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制, 2022, 50(22): 49-58. 
ZHANG J L, LIU Z Y. Ultra short term wind speed interval prediction based on a hybrid model[J]. Power System Protection and Control, 2022, 50(22): 49-58. 
[10]朱昶胜, 李岁寒. 基于改进果蝇优化算法的随机森林回归模型及其在风速预测中的应用[J]. 兰州理工大学学报, 2021, 47(4): 83-90. 
ZHU C S, LI S H. Random forest regression model based on improved fruit fly optimization algorithm and its application in wind speed forecasting[J]. Journal of Lanzhou University of Technology, 2021, 47(4): 83-90. 
[11]孙川永, 彭友兵, 刘志亮, 等. 梯度提升树算法在陕北风电场短期风电功率预测中的应用[J]. 电网与清洁能源, 2022, 38(4): 124-128, 134. 
SUN C Y, PENG Y B, LIU Z L, et al. Short-term wind power prediction of the wind farm in northern Shaanxi based on gradient boosting decision tree[J]. Power System and Clean Energy, 2022, 38(4): 124-128, 134. 
[12]柏丹丹, 和敬涵, 王小君, 等. 自适应粒子群支持向量机风速组合预测模型[J]. 太阳能学报, 2015, 36 (4): 792-797. 
BAI D D, HE J H, WANG X J, et al. Combination model for forecasting wind speed based on adaptive PSO-SVM [J]. Acta Energiae Solaris Sinica, 2015, 36(4): 792-797. 
[13] TIAN Z D, CHEN H. A novel decomposition-ensemble prediction model for ultra-short-term wind speed[J]. Energy Conversion and Management, 2021, 248: 114775. 
[14]冯义, 刘慧文, 张宝平, 等. 基于集合经验模态分解和特征选择极端学习机的风速预测[J]. 智慧电力, 2018, 46(12): 30-37. 
FENG Y, LIU H W, ZHANG B P, et al. Short-term wind speed forecasting using ensemble empirical mode decomposition and extreme learning machine with feature selection[J]. Smart Power, 2018, 46(12): 30-37. 
[15] XIONG D Z, FU W L, WANG K, et al. A blended approach incorporating TVFEMD, PSR, NNCT-based multimodel fusion and hierarchy-based merged optimization algorithm for multi-step wind speed prediction[J]. Energy Conversion and Management, 2021, 230: 113680. 
[16] ZHAO Z N, YUN S N, JIA L Y, et al. Hybrid VMD-CNNGRU-based model for short-term forecasting of wind power considering spatio-temporal features[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105982. 
[17] ZHONG C T, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[18] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. 
[19] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95 (C): 51-67. 
[20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 
[21]王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48 (11): 45-52. 
WANG J, LI X, ZHOU X D, et al. Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power System Protection and Control, 2020, 48(11): 45-52. 
[22]张文煜, 马可可, 郭振海, 等. 基于灰狼算法和极限学习机的风速多步预测[J]. 郑州大学学报(工学版), 2024, 45(2): 89-96. 
ZHANG W Y, MA K K, GUO Z H, et al. Multistep prediction of wind speed based on grey wolf algorithm and extreme learning machine[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 89-96. 
[23]张俱珲, 孟建军, 李德仓, 等. 基于SSA-BP的铁路沿线风速预测方法[J]. 计算机仿真, 2023, 40(12): 209-212, 260. 
ZHANG J H, MENG J J, LI D C, et al. A method for predicting wind speed along railway lines based on SSABP[J]. Computer Simulation, 2023, 40(12): 209212, 260. 
[24]田崇翼, 王学睿, 王瑞琪. 基于CEEMD-SVM的风速混合预测模型研究[J]. 计算机时代, 2023(7): 24-28. 
TIAN C Y, WANG X R, WANG R Q. Research on hybrid wind speed prediction model based on CEEMD-SVM [J]. Computer Era, 2023(7): 24-28.

更新日期/Last Update: 2025-05-22