[1]黄 源,徐鑫艾,赵 珉,等.监测信息对城市雨水管网模型校核的影响分析[J].郑州大学学报(工学版),2025,46(03):97-104.[doi:10.13705/j.issn.1671-6833.2024.06.012]
 HUANG Yuan,XU Xinai,ZHAO Min,et al.Analyzing the Influence of the Number and Layout of Sensors on the Calibration of Urban Drainage Models[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):97-104.[doi:10.13705/j.issn.1671-6833.2024.06.012]
点击复制

监测信息对城市雨水管网模型校核的影响分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
97-104
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
Analyzing the Influence of the Number and Layout of Sensors on the Calibration of Urban Drainage Models
文章编号:
1671-6833(2025)03-0097-08
作者:
黄 源1 徐鑫艾1 赵 珉1 李明宇1 郑飞飞2
1.河海大学 水利水电学院,江苏 南京 210098;2.浙江大学 建筑工程学院,浙江 杭州 310058
Author(s):
HUANG Yuan1 XU Xin’ai1 ZHAO Min1 LI Mingyu1 ZHENG Feifei2
1.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; 2.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
关键词:
雨水管网模型 城市内涝 模型校核 监测点优化布局 监测点数量 粒子群优化
Keywords:
urban drainage models urban flooding model calibration optimized layout of sensors number of sensors particle swarm optimization
分类号:
TU992.4
DOI:
10.13705/j.issn.1671-6833.2024.06.012
文献标志码:
A
摘要:
城市雨水管网模型参数复杂,模型校核面临较大挑战,而现有研究多集中于校核方法,忽略了监测点数量和布局对校核效果的影响,导致模型泛化能力差。以丹麦贝灵厄镇的雨水管网为案例,采用智能优化方法确定不同监测点数量下模型性能最优的监测布局方案,并分析监测点数量和布局对模型校核效果的影响。结果表明:增加监测点数量并优化其空间布局能显著提高模型的准确性和鲁棒性,如5个水位监测点的优化布局方案相比于空间均匀布局方案校核模型对内涝节点处平均预测精度提升约53%;模型校核存在显著“异参同效”问题,难以准确率定参数,但当监测信息充足时,模型仍能达到满足应用需求的预测性能,如监测点数量由1个增加至5个以上时校核模型的整体预测性能可提升38%以上。
Abstract:
Urban drainage models (UDMs) often involved a large number of complex parameters, leading to significant challenges for model calibration. Existing studies focused on calibration methods but neglected the impact of monitoring point placement on the calibration effect. It led to the issues of poor generalization ability and low reliability of the model. In this study, the real-world UDM in the town of Bellinge, Denmark was taken as a case study and optimization methods were utilied to determine the optimal layouts of sensors under different numbers, therefore the impact of the number and layout of sensors on the UDM calibration were analyzed. Results showed that increasing the number of sensors and optimizing the sensor layout could significantly improve the accuracy and robustness of the model calibration. For instance, the average prediction accuracy of the calibration model at flooding nodes with the optimized layout scheme with five water level sensors improved by about 53% compared with the spatially uniform layout scheme. The study also revealed that the UDM calibration problem faced the challenge of "parameter equifinality", which hindered the accurate deduction of true parameter values. However, a calibration model that met practical requirements could still be obtained when there was sufficient observation information. For instance, increasing the number of sensors from one to more than five enhanced the overall prediction performance of the calibration model by over 38%.

参考文献/References:

[1]刘家宏, 裴羽佳, 梅超, 等. 郑州“7·20” 特大暴雨内涝成因及灾害防控[J]. 郑州大学学报(工学版), 2023, 44(2): 38-45. 

LIU J H, PEI Y J, MEI C, et al. Waterlogging cause and disaster prevention and control of “7·20” torrential rain in Zhengzhou[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 38-45. 
[2]郑德凤, 高敏, 李钰, 等. 基于GIS的大连市暴雨洪涝灾害综合风险评估[J]. 河海大学学报(自然科学版), 2022, 50(3): 1-8, 22. 
ZHENG D F, GAO M, LI Y, et al. Comprehensive risk assessment of rainstorm-flood disaster in Dalian City based on GIS[J]. Journal of Hohai University (Natural Sciences), 2022, 50(3): 1-8, 22. 
[3]NIAZI M, NIETCH C, MAGHREBI M, et al. Storm water management model: performance review and gap analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2): 10. 
[4]宫永伟, 戚海军, 宋瑞宁, 等. 无率定情况下城市雨洪模拟的误差分析[J]. 中国给水排水, 2012, 28 (23): 46-50. 
GONG Y W, QI H J, SONG R N, et al. Error analysis in simulation of urban stormwater runoff using default parameters[J]. China Water & Wastewater, 2012, 28 (23): 46-50. 
[5]郭效琛, 李萌, 赵冬泉, 等. 基于情景模拟的城市排水管网监测点自动识别[J]. 中国给水排水, 2021, 37 (9): 130-136. 
GUO X C, LI M, ZHAO D Q, et al. Automatic identification of urban drainage pipe monitoring points based on scenario simulation[J]. China Water & Wastewater, 2021, 37(9): 130-136. 
[6]马彦斌, 盛旺, 李江云, 等. 基于遗传算法的SWMM模型参数率定研究[J]. 中国农村水利水电, 2020 (7): 46-49, 53. 
MA Y B, SHENG W, LI J Y, et al. Parameter calibration of SWMM model based on GA[J]. China Rural Water and Hydropower, 2020(7): 46-49, 53. 
[7]叶陈雷, 徐宗学, 雷晓辉, 等. 基于SWMM和InfoWorks ICM的城市街区洪涝模拟与分析[J]. 水资源保护, 2023, 39(2): 87-94. 
YE C L, XU Z X, LEI X H, et al. Flood simulation and risk analysis on urban block scale based on SWMM and InfoWorks ICM[J]. Water Resources Protection, 2023, 39(2): 87-94. 
[8]CAI B, YU Y X. Flood forecasting in urban reservoir using hybrid recurrent neural network[J]. Urban Climate, 2022, 42: 101086. 
[9]SWATHI V, RAJU K S, VARMA M R R, et al. Automatic calibration of SWMM using NSGA-Ⅲ and the effects of delineation scale on an urban catchment[J]. Journal of Hydroinformatics, 2019, 21(5): 781-797. 
[10] REED P M, HADKA D, HERMAN J D, et al. Evolutionary multiobjective optimization in water resources: the past, present, and future[J]. Advances in Water Resources, 2013, 51: 438-456. 
[11] KANSO A, GROMAIRE M C, GAUME E, et al. Bayesian approach for the calibration of models: application to an urban stormwater pollution model[J]. Water Science and Technology, 2003, 47(4): 77-84. 
[12] HER Y, CHAUBEY I. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty[J]. Hydrological Processes, 2015, 29(19): 4220-4237. 
[13] KELLEHER C, MCGLYNN B, WAGENER T. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3325-3352. 
[14] PEDERSEN A N, PEDERSEN J W, VIGUERAS-RODRIGUEZ A, et al. The Bellinge data set: open data and models for community-wide urban drainage systems research[J]. Earth System Science Data, 2021, 13(10): 4779-4798. 
[15]廖如婷, 徐宗学, 叶陈雷, 等. 暴雨洪水管理模型参数敏感性分析[J]. 水力发电学报, 2022, 41(6): 11-21. 
LIAO R T, XU Z X, YE C L, et al. Parameter sensitivity analysis methods of Storm Water Management Model [J]. Journal of Hydroelectric Engineering, 2022, 41 (6): 11-21. 
[16]赵冬泉, 王浩正, 陈吉宁, 等. 监测技术在排水管网运行管理中的应用及分析[J]. 中国给水排水, 2012, 28(8): 11-14. 
ZHAO D Q, WANG H Z, CHEN J N, et al. Application and analysis of monitoring technology in operation and management of urban drainage network[J]. China Water & Wastewater, 2012, 28(8): 11-14. 
[17]陈晓燕, 张娜, 吴芳芳, 等. 雨洪管理模型SWMM的原理、参数和应用[J]. 中国给水排水, 2013, 29(4): 4-7. 
CHEN X Y, ZHANG N, WU F F, et al. Stormwater management model(SWMM): principles, parameters and applications[J]. China Water & Wastewater, 2013, 29 (4): 4-7. 
[18] ZAKIZADEH F, NIA A M, SALAJEGHEH A, et al. Efficient urban runoff quantity and quality modelling using SWMM model and field data in an urban watershed of Tehran metropolis [ J]. Sustainability, 2022, 14 (3): 1086. 
[19] KIM S W, KWON S H, JUNG D. Development of a multiobjective automatic parameter-calibration framework for urban drainage systems[J]. Sustainability, 2022, 14 (14): 8350. 
[20]WANG K, GONG Y, PENG Y L, et al. An improved fusion crossover genetic algorithm for a time-weighted maximal covering location problem for sensor siting under satellite-borne monitoring[J]. Computers and Geosciences, 2020, 136: 104406. 
[21] VONACH T, KLEIDORFER M, RAUCH W, et al. An insight to the cornucopia of possibilities in calibration data collection[J]. Water Resources Management, 2019, 33 (5): 1629-1645.

相似文献/References:

[1]张金萍,张朝阳,左其亭.极端暴雨下城市内涝模拟与应急响应能力评估[J].郑州大学学报(工学版),2023,44(02):30.[doi:10.13705/j.issn.1671-6833.2023.02.020]
 ZHANG Jinping,ZHANG Zhaoyang,ZUO Qiting.Urban Waterlogging Simulation and Emergency Response Capacity Evaluation with Extreme Rainstorms[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):30.[doi:10.13705/j.issn.1671-6833.2023.02.020]

更新日期/Last Update: 2025-05-22