[1]卢友军,吴 森,魏嘉银,等.带时间延迟和强制静默的 SICR 谣言传播模型[J].郑州大学学报(工学版),2024,45(06):83-91.[doi:10.13705/j.issn.1671-6833.2024.06.021]
 LU Youjun,WU Sen,WEI Jiayin,et al.A SICR Rumor Propagation Model with Time Delay and Enforced Silence[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):83-91.[doi:10.13705/j.issn.1671-6833.2024.06.021]
点击复制

带时间延迟和强制静默的 SICR 谣言传播模型()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年06期
页码:
83-91
栏目:
出版日期:
2024-09-25

文章信息/Info

Title:
A SICR Rumor Propagation Model with Time Delay and Enforced Silence
文章编号:
1671-6833(2024)06-0083-09
作者:
卢友军 吴 森 魏嘉银 邓 丽 罗莎莎
贵州民族大学 数据科学与信息工程学院,贵州 贵阳 550025
Author(s):
LU Youjun WU Sen WEI Jiayin DENG Li LUO Shasha
School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
关键词:
SICR 模型 辟谣 基本再生数 平衡点 稳定性
Keywords:
SICR model rumor refutation basic reproduction number equilibrium point stability
分类号:
TP393
DOI:
10.13705/j.issn.1671-6833.2024.06.021
文献标志码:
A
摘要:
考虑谣言传播过程中传播者传播谣言时可能存在时间延迟以及受到网络监管者的强制静默而无法传播谣言等因素,在 SIR 模型的基础上,结合辟谣机制和空格理论,将网络中的节点分为易感节点 S、感染节点 I、辟谣节点 C 和免疫节点 R,提出了一种新的 SICR 谣言传播模型。 首先,通过平均场理论给出了均匀网络结构下谣言传播动力学方程,分析了平衡点的存在性,利用下一代矩阵法计算了模型的基本再生数,发现基本再生数与传播率、平均度、迁入率、迁出率、强制静默率和感染节点恢复率有关。 其次,通过 Routh-Hurwitz 判据分析了平衡点处的局部渐近稳定性,并且通过 LaSalle 不变原理对无谣言平衡点的全局渐近稳定性进行分析。 最后,利用数值仿真实验对理论结果的正确性进行验证,结果表明:考虑辟谣机制的 SICR 模型相较于 SIR 模型能够更好地抑制谣言的传播。基于 Dataset_R6 数据集,采用最小二乘法拟合了模型参数,模型的 R2 为 0. 950 8。
Abstract:
Considering the factors such as time delay in the propagation of rumors and the inability to spread rumorsdue to the forced silence of network regulators, in this study, based on the SIR model, combined with the rumorrefuging mechanism and the space theory, nodes in the network were divided into susceptible node S, infectivenode I, rumor-refuging node C and recovered node R, a new SICR rumor propagation model was proposed. Firstly,the dynamic equation of rumor propagation in homogeneous network structure was given by means of average fieldtheory, the existence of equilibrium point was analyzed, and the basic reproduction number of the model was calculated by using the next generation matrix method. It was found that the basic reproduction number was related to thepropagation rate, average degree, migration rate, migration rate, forced silence rate, and recovery rate of infectivenodes. Secondly, the local asymptotic stability of the equilibrium point was analyzed by Routh-Hurwitz criterion,and the global asymptotic stability was analyzed by LaSalle′s invariance principle. Finally, the correctness of thetheoretical results was verified by numerical simulation experiments. The simulation results showed that SICR modelconsidering the rumor-refuting mechanism could suppress the rumor propagation better than SIR model. Based onDataset_R6 dataset, the parameters of the model were fitted by least square method, and the R2of the model was0. 950 8.

参考文献/References:

[1] CHIERICHETTI F, LATTANZI S, PANCONESI A. Rumor spreading in social networks [ J] . Theoretical Computer Science, 2011, 412(24) : 2602-2610.

[2] DALEY D J, KENDALL D G. Epidemics and rumours[ J] . Nature, 1964, 204: 1118.
[3] MAKI D P, THOMPSON M. Mathematical models andapplications: with emphasis on the social life, and management sciences[ J] . The Mathematics Teacher, 1974,67(6) :541.
[4] ZANETTE D H. Dynamics of rumor propagation on smallworld networks[ J] . Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4) : 041908.
[5] MORENO Y, NEKOVEE M, PACHECO A F. Dynamicsof rumor spreading in complex networks[ J] . Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2004, 69(6) : 066130.
[6] 方洁, 杜海明, 刘娜. 变时滞耦合不确定复杂网络修正函数投影同步[ J] . 郑州大学学报(工学版) , 2018,39(4) : 81-85, 91.
FANG J, DU H M, LIU N. Modified function projectivesynchronization of uncertain complex dynamical networkswith time-varying coupling delay [ J] . Journal of Zhengzhou University ( Engineering Science) , 2018, 39 ( 4) :81-85, 91.
[7] GUO H M, YAN X F, NIU Y B, et al. Dynamic analysisof rumor propagation model with media report and timedelay on social networks[ J] . Journal of Applied Mathematics and Computing, 2023, 69(3) : 2473-2502.
[8] TONG X R, JIANG H J, QIU J L, et al. Dynamic analysis of the IFCD rumor propagation model under stochasticdisturbance on heterogeneous networks [ J] . Chaos Solitons and Fractals, 2023, 173: 113637.
[9] LUO X P, JIANG H J, CHEN S S, et al. Stability andoptimal control for delayed rumor-spreading model withnonlinear incidence over heterogeneous networks [ J ] .Chinese Physics B, 2023, 32(5) : 058702.
[10] YUAN T Y, GUAN G, SHEN S L, et al. Stability analysis and optimal control of epidemic-like transmission model with nonlinear inhibition mechanism and time delay inboth homogeneous and heterogeneous networks[ J] . Journal of Mathematical Analysis and Applications, 2023,526(1) : 127273.
[11] JAIN A, DHAR J, GUPTA V K. Optimal control of rumorspreading model on homogeneous social network with consideration of influence delay of thinkers[J]. Differential Equations and Dynamical Systems, 2023, 31(1): 113-134.
[12] CHEN J H, MA H C, YANG S. SEIOR rumor propagation model considering hesitating mechanism and differentrumor-refuting ways in complex networks[ J] . Mathematics, 2023, 11(2) : 283.
[13] CHENG Y Y, HUO L A, ZHAO L J. Dynamical behaviors and control measures of rumor-spreading model inconsideration of the infected media and time delay [ J] .Information Sciences, 2021, 564: 237-253.
[14] CHANG Z X, JIANG H J, YU S Z, et al. Dynamic analysis and optimal control of ISCR rumor propagation modelwith nonlinear incidence and time delay on complex networks [ J ] . Discrete Dynamics in Nature and Society,2021, 2021: 3935750.
[15] HUO L A, MA C Y. Optimal control of rumor spreadingmodel with consideration of psychological factors and timedelay [ J ] . Discrete Dynamics in Nature and Society,2018, 2018: 9314907.
[16] ZHU L H, GUAN G. Dynamical analysis of a rumorspreading model with self-discrimination and time delay incomplex networks[ J] . Physica A: Statistical Mechanicsand Its Applications, 2019, 533: 121953.
[17] ZHU L H, WANG B X. Stability analysis of a SAIR rumorspreading model with control strategies in online social networks[J]. Information Sciences, 2020, 526: 1-19.
[18] ZHU L H, LIU W S, ZHANG Z D. Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silencefunction [ J ] . Applied Mathematics and Computation,2020, 370: 124925.
[19] PAN W Q, YAN W J, HU Y H, et al. Dynamic analysisof a SIDRW rumor propagation model considering theeffect of media reports and rumor refuters[ J] . NonlinearDynamics, 2023, 111(4) : 3925-3936.
[20] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria forcompartmental models of disease transmission[ J] . Mathematical Biosciences, 2002, 180: 29-48.
[21] MISRA A K, SHARMA A, SINGH V. Effect of awareness programs in controlling the prevalence of an epidemicwith time delay[ J] . Journal of Biological Systems, 2011,19(2) : 389-402.
[22] SAHU B K, GUPTA M M, SUBUDHI B. Stability analysis of nonlinear systems using dynamic-Routh′s stabilitycriterion: a new approach [ C]∥2013 International Conference on Advances in Computing, Communications andInformatics ( ICACCI) . Piscataway: IEEE, 2013: 1765-1769.
[23] LA SALLE J P. The stability of dynamical systems[ M] .Philadelphia: Society for Industrial and Applied Mathematics, 1976.

更新日期/Last Update: 2024-09-29