参考文献/References:
[1] 吴晗, 张志龙, 李楚为, 等. 时敏目标的类型与瞄准点识别算法[J]. 航空兵器, 2022,29(2):24-29.
WU H, ZHANG Z L , Li C W , et al . Recognition Algorithm for Types and Aiming Point of the Time -Sensitive Targets[J]. Aero Weaponry , 2022 ,29(2):24-29.
[2] GURKAN B. Robust object tracking via integration of particle filtering with deep detection[J]. Digital Signal Processing, 2019,87:112-124.
[3] CHEN J, LIN Y, HUANG D, et al. Robust tracking algorithm for infrared target via correlation filter and particle filter - ScienceDirect[J]. Infrared Physics & Technology, 2020,111: 103516-.
[4] 周孟然, 李学松, 朱梓伟, 等. 井下矿工多目标检测与跟踪联合算法[J]. 工矿自动化, 2022,48(10):40-47.
ZHOU M R,LI X S, ZHU Z W, et al. A joint algorithm of multi-target detection and tracking for underground miners[J]. Journal of Mine Automation, 2022,48(10):40-47.
[5] 黄培荣, 宋剑, 李楠. 打击时敏目标的决策任务层次分解[J]. 计算机与数字工程, 2014,42(10):1905-1907.
HUANG P R, SONG J,LI N. Decision-making task hierarchical decomposition of blowing time sensitive target[J]. Computer & Digital Engineering, 2014, 42(10):1905-0907.
[6] ARPAIA P, DURACCIO L, MOCCALDI N, et al. Wearable brain–computer interface instrumentation for robot-based rehabilitation by augmented reality[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6362–6371.
[7] 黄章瑞. 情境驱动的AR--BCI脑机交互方法研究[D]. 郑州大学计算机技术, 2021.
HUANG Z R. Research on Situations drive Brain-·Computer Interaction based on AR-BCI [D]. Zhengzhou: Zhengzhou University , 2021.
[8] 蒋永玉. 假手脑控的增强现实视觉刺激范式及其异步应用系统研究[D]. 西安交通大学, 2022.
JIANG Y Y. Research on Augmented-Reality Visually Stimulus Paradigm and Its Asynchronous BCI System for Prosthetic Hands [D], Xi’an: Xi’an Jiaotong University, 2022
[9] FANG B, DING W, SUN F, et al. Brain-Computer Interface Integrated With Augmented Reality for Human-Robot Interaction[J]. IEEE transactions on cognitive and developmental systems, 2022,15(4):1702-1711.
[10] ZHANG R, CAO L, XU Z, et al. Improving AR-SSVEP Recognition Accuracy Under High Ambient Brightness Through Iterative Learning[J]. IEEE Trans Neural Syst Rehabil Eng, 2023,31:1796-1806.
[11] 邹霞. 基于SSVEP的脑机接口系统设计与研究[D]. 南昌大学通信与信息系统, 2014.
ZOU X. Design and research of brain-computer interface system based on SSVEP[D], Nanchang: Nanchang University, 2014.
[12] 白雪鹏. 基于改进YOLO V5算法的遮挡行人检测应用研究[D]. 大连交通大学, 2023.
BAI X P. Improved YOLO V5 Algorithm based on Obscured Pedestrian Detection Application Research[D]. Dalian: Dalian Jiaotong University, 2023
[13] 院老虎, 常玉坤, 刘家夫. 基于改进YOLOv5s的雾天场景车辆检测方法[J]. 郑州大学学报(工学版), 2023,44(3):35-41.
YUAN L H, CHANG Y K, LIU J F. Vehicle detection method based on improved YOLOv5s in foggy scene[J]. Journal of Zhengzhou University (Engineering Science), 2023,44(3):35-41.
[14] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进Ghost-YOLOv5红外目标检测算法[J]. 郑州大学学报:工学版, 2022,43(1):7.
LI B M, JIN R L, XU Z F, et al. An improved Ghost-YOLOv5 infrared target detection algorithm based on feature distillation[J]. Journal of Zhengzhou University (Engineering Science), 2022,43(01):20-26.
[15] HORII S, N AKAUCHI S . AR-SSVEP for brain-machine interface: Estimating user’s gaze in head-mounted display with USB camera: 2015 IEEE Virtual Reality (VR)[C], 2015.
[16] HAKIM S ,JIMMY P ,CAMILLE J, et al. Towards BCI-based Interfaces for Augmented Reality: Feasibility, Design and Evaluation[J]. IEEE Transactions on Visualization and Computer Graphics, 2020,26(3):1608-1621.
[17] SHAO X, L IN M. Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification[J]. Cognitive Neurodynamics, 2020,14(6).
[18] YIN X, L IN M. Multi-information improves the performance of CCA-based SSVEP classification[J]. Cogn Neurodyn, 2024,18(1):165-172.
[19] ZHAO X, LIU C, XU Z, et al. SSVEP Stimulus Layout Effect on Accuracy of Brain-Computer Interfaces in Augmented Reality Glasses[J]. IEEE access, 2020,8:5990-5998.
[20] WANG K, ZHAI D H, XIONG Y, et al. An MVMD-CCA Recognition Algorithm in SSVEP-Based BCI and Its Application in Robot Control[J]. IEEE transactions on neural networks and learning systems, 2022(5):33.
[21] 张力新,张裕坤,柯余峰,等.基于Hololens的增强现实脑-机接口研究[J].中国生物医学工程学报,2019,38(1):51-58.
ZHANG L X, ZHANG Y K, KE Y F, et al. A study of argument reality based brain-computer interface(AR-BCI) in Hololens[J]. Chinese Journal of Biomedical Engineering, 2019,38(1):51-58
[22] 何丽. 基于碎片化视频信息的关键目标人物检测和跟踪[D]. 南京邮电大学, 2023.
相似文献/References:
[1]马民,秦佳,杨东升,等.人工智能在电力系统中的应用综述[J].郑州大学学报(工学版),2019,40(05):22.[doi:10.13705/j.issn.1671-6833.2019.05.012]
Ma Min,Qin Jia,Yang Dongsheng,et al.A review of the application of artificial intelligence in power system[J].Journal of Zhengzhou University (Engineering Science),2019,40(pre):22.[doi:10.13705/j.issn.1671-6833.2019.05.012]
[2]李春雨,谭同德,翟震..原型设计法在智能CAD中的应用研究[J].郑州大学学报(工学版),2001,22(03):81.[doi:10.3969/j.issn.1671-6833.2001.03.025]
LI Chunyu,Tongde Tan,Zhai Zhen.Research on the application of prototyping method in intelligent CAD[J].Journal of Zhengzhou University (Engineering Science),2001,22(pre):81.[doi:10.3969/j.issn.1671-6833.2001.03.025]
[3]高学军,张琳娜,苏智剑,等.基于人工智能的零件配合设计方法研究[J].郑州大学学报(工学版),1998,19(04):26.
Gao Xuejun,Zhang Linna,Su Zhijian,et al.Research on the design method based on artificial intelligence -based parts coordination[J].Journal of Zhengzhou University (Engineering Science),1998,19(pre):26.
[4]韩兵.基于知识分层的智能校正控制[J].郑州大学学报(工学版),1990,11(03):102.
Han Bing,Intelligent correction control based on knowledge[J].Journal of Zhengzhou University (Engineering Science),1990,11(pre):102.
[5]王国中.开发事务处理专家系统——快速原型化方法[J].郑州大学学报(工学版),1990,11(03):130.
Wang Guozhong,Development transaction processing expert system -fast prototype method[J].Journal of Zhengzhou University (Engineering Science),1990,11(pre):130.