[1]邢海鹏,吴光华,王 格,等.基于修正剑桥模型的土体压密注浆机理分析[J].郑州大学学报(工学版),2025,46(04):121-128.[doi:10.13705/j.issn.1671-6833.2025.01.004]
 XING Haipeng,WU Guanghua,WANG Ge,et al.Mechanism Analysis of Soil Compaction Grouting Based on Modified Cam-clay Model[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):121-128.[doi:10.13705/j.issn.1671-6833.2025.01.004]
点击复制

基于修正剑桥模型的土体压密注浆机理分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
121-128
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Mechanism Analysis of Soil Compaction Grouting Based on Modified Cam-clay Model
文章编号:
1671-6833(2025)04-0121-08
作者:
邢海鹏12 吴光华12 王 格1 陈坤洋1 李晓龙1 张 蓓1
1. 郑州大学 水利与交通学院,河南 郑州 450001;2. 河南省赵口引黄灌区二期工程建设管理局,河南 开封 475000
Author(s):
XING Haipeng12 WU Guanghua12 WANG Ge1 CHEN Kunyang1 LI Xiaolong1 ZHANG Bei1
1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2. Construction Administration of the Second Phase Project of Zhaokou Irrigation Area of the Yellow River in Henan Province, Kaifeng 475000, China
关键词:
压密注浆 修正剑桥模型 数值模拟 有限元 挤密机理
Keywords:
compaction grouting modified Cam-clay model numerical simulation finite element compaction mechanism
分类号:
TV543+. 7
DOI:
10.13705/j.issn.1671-6833.2025.01.004
文献标志码:
A
摘要:
现有压密注浆仿真方法仅能分析注浆后的应力分布,无法获得压密后土体孔隙比、密度等反映注浆挤密效果的参数信息,为此引入修正剑桥模型描述土体力学行为,基于弹塑性有限元理论,建立了一种模拟常密度浆液在土体中压密注浆过程的仿真模型,实现了对地层挤密效应更加全面直观的描述。 以黏土、粉质黏土等低渗透性土为对象开展了压密注浆仿真分析,与解析解和试验结果的对比显示:不同注浆压力下土体径向应力和孔隙比模拟值与解析解的总体平均相对误差分别为 4. 04%和 0. 29%;不同深度条件下土体孔隙比和弹性模量计算值与现场试验结果的平均相对误差分别为 5. 70%和 2. 85%,证明了该模型较好的适用性。 在此基础上分析了注浆加固后浆柱周围土体密度、孔隙比、弹性模量等参数分布特征,结果表明:注浆深度 1. 5 m 处,注浆压力从 0. 4 MPa 增至1. 0 MPa 时,距 注 浆 孔 中 心 0. 05 m 处 土 体 密 度、 弹 性 模 量 和 孔 隙 比 近 似 呈 线 性 变 化, 平 均 变 化 率 分 别 为0. 148 g / ( cm3·MPa) 、0. 808 和-0. 127 MPa- 1;注浆压力 0. 4 MPa 时,随着注浆深度增加,距注浆孔中心 0. 05 m 处土体密度和弹性模量的增加率、孔隙比降低率均逐渐下降。 总体来看,注浆加固后浆柱周围土体密度、弹性模量有较大提升,孔隙比明显降低,距注浆孔越远土体参数改变量越小,逐渐恢复至初始状态;相同注浆压力条件下,随着注浆深度增大,压密效果逐渐减弱。
Abstract:
The existing compaction grouting simulation method only can analyze the stress distribution after grouting, but cannot obtain the parameter information reflecting the compaction effect of grouting, such as the void ratio and density of soil after compaction. Therefore, a modified Cam-clay ( MCC ) model was introduced to describe the mechanical property of soil, and based on the elastic-plastic finite element theory, a simulation method was established to simulate the compaction grouting process of constant density slurry in soil. A more comprehensive and intuitive description of the formation compaction effect was achieved. The compaction grouting simulation analysis was carried out on clay, silty clay and other low permeability soil. Compared with the analytical solutioin and experimental results, the overall average relative errors of the simulated values and analytical solutions of radial stress and void ratio with different grouting pressures were 4. 04% and 0. 29%, respectively, and the average relative errors between the calculated void ratio and elastic modulus and the field test results were 5. 70% and 2. 85%, respectively, which proved the applicability of the proposed model. On this basis, the distribution characteristics of soil density, void ratio and elastic modulus around the grouting column after grouting reinforcement were analyzed. The results showed that when the grouting pressure increased from 0. 4 MPa to 1. 0 MPa at the grouting depth of 1. 5 m, the soil density, elastic modulus and void ratio at 0. 05 m from the center of the grouting hole approximated linear changes, and the average change rates werre 0. 148 g / ( cm 3·MPa) , 0. 808 and -0. 127 MPa - 1 , respectively. When the grouting pressure was 0. 4 MPa, the increase rates of soil density and elastic modulus and the decrease rate of void ratio at 0. 05 m from the center of the grouting hole gradually decreased with the increase of grouting depth. Overall, the density and elastic modulus of the soil around the grouting column were greatly increased after grouting reinforcement, and the void ratio was significantly reduced. The soil parameters changed less with the distance from the grouting hole, and gradually returned to the initial state. On the same grouting pressure condition, with the increase of grouting depth, the compaction effect gradually weakened.

参考文献/References:

[1] 李斌, 方宏远, 王复明. 脱空排水管道高聚物修复前 后力学特性分析[ J] . 郑州大学学报(工学版) , 2019, 40(1) : 62-66. 

LI B, FANG H Y, WANG F M. Analysis of the mechanical characteristics of disengaging drainage pipe before and after polymer repairing[ J] . Journal of Zhengzhou University ( Engineering Science) , 2019, 40 ( 1) : 62-66. 
[2] 李向红. CCG 注浆技术的理论研究和应用研究[ D] . 上海: 同济大学, 2002. 
LI X H. Theoretical research and application research of CCG grouting technology[D]. Shanghai: Tongji University, 2002. 
[3] 巨 建 勋. 土 体 压 密 注 浆 机 理 及 其 抬 升 作 用 的 研 究 [D] . 长沙: 中南大学, 2007. 
JU J X. Study on the mechanism and the upward-effect of compaction grouting [ D ] . Changsha: Central South University, 2007. 
[4] 唐智伟, 赵成刚. 注浆抬升地层的机制、解析解及数 值 模 拟 分 析 [ J ] . 岩 土 力 学, 2008, 29 ( 6 ) : 1512-1516. 
TANG Z W, ZHAO C G. Mechanisms of ground heave by grouting and analytical solutions & numerical modeling [ J ] . Rock and Soil Mechanics, 2008, 29 ( 6 ) : 1512-1516. 
[5] 王 立 中. 柔 性 管 加 筋 注 浆 新 技 术 试 验 及 应 用 研 究 [D] . 长沙: 中南大学, 2008. 
WANG L Z. Test and application research on new technology of reinforced grouting with flexible pipe[ D] . Changsha: Central South University, 2008. 
[6] 周子龙, 赵云龙, 陈钊, 等. 基于颗粒流方法的土体 压密注 浆 细 观 机 理 [ J] . 中 南 大 学 学 报 ( 自 然 科 学 版) , 2017, 48(2) : 465-472. 
ZHOU Z L, ZHAO Y L, CHEN Z, et al. Mesomechanism of compaction grouting in soil based on particle flow method [ J ] . Journal of Central South University ( Science and Technology ) , 2017, 48 ( 2 ) : 465-472. 
[7] WANG D Y, XING X M, QU H H, et al. Simulated radial expansion and heave caused by compaction grouting in noncohesive soils[ J] . International Journal of Geomechanics, 2015, 15(4) : 1-10. 
[8] SHRIVASTAVA N, ZEN K, SHUKLA S K. Modeling of compaction grouting technique with development of cylindrical cavity expansion problem in a finite medium [ J] . International Journal of Geosynthetics and Ground Engineering, 2017, 3(4) : 1-12. 
[9] SHRIVASTAVA N, ZEN K. Finite element modeling of compaction grouting on its densification and confining aspects [ J ] . Geotechnical and Geological Engineering, 2018, 36(4) : 2365-2378. 
[10] 周凤玺, 牟占霖, 杨汝贤, 等. 不同排水条件下非饱 和土中 柱 孔 扩 张 问 题 的 解 析 分 析 [ J ] . 力 学 学 报, 2021, 53(5) : 1496-1509. 
ZHOU F X, MU Z L, YANG R X, et al. Analytical analysis on the expansion of cylindrical cavity in unsaturated soils under different drainage conditions[ J] . Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5) : 1496-1509. 
[11] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical [ J ] . Gotechnique, 1963, 13(3) : 211-240. 
[12] BURLAND J B. The yielding and dilation of clay [ J] . Gotechnique,1965,15(2) :211-214. 
[13] 叶飞, 陈治, 苟长飞, 等. 基于球孔扩张的盾构隧道 壁后注浆压密模型[ J] . 交通运输工程学报, 2014, 14 (1) : 35-42. 
YE F, CHEN Z, GOU C F, et al. Back-filled grouting compaction model of shield tunnel based on spherical cavity expansion [ J] . Journal of Traffic and Transportation Engineering, 2014, 14(1) : 35-42. 
[14] 吴悦, 赵春风, 王有宝, 等. 黏土中考虑土体卸荷效 应的后 注 浆 压 密 模 型 [ J] . 哈 尔 滨 工 业 大 学 学 报, 2020, 52(11) : 71-79. 
WU Y, ZHAO C F, WANG Y B, et al. Compaction grouting model in clay considering unloading effect [ J] . Journal of Harbin Institute of Technology, 2020, 52 (11) : 71-79. 
[15] OWEN D R J, HINTON E. Finite elements in plasticity: theory and practice[M]. Swansea: Pineridge Press, 1980. 
[16] 李镜培, 周攀, 李亮, 等. 饱和结构性黄土不排水柱 孔扩张问题弹塑性解[ J] . 同济大学学报( 自然科学 版) , 2021, 49(2) : 163-172. 
LI J P, ZHOU P, LI L, et al. Elastic-plastic solution for undrained expansion of cylindrical cavity in saturated structured loess[ J] . Journal of Tongji University ( Natural Science) , 2021, 49(2) : 163-172. 
[17] 周攀, 李镜培, 李亮, 等. 结构性黄土排水柱孔扩张 问题弹塑性解析[ J] . 岩石力学与工程学报, 2021, 40 (1) : 175-186. 
ZHOU P, LI J P, LI L, et al. Elastic-plastic solution for drained cylindrical cavity expansion in structured loess [ J] . Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1) : 175-186. 
[18] 周航, 王增亮, 申航, 等. 软黏土中静压桩打桩过程 对土体强度和刚度影响的理论分析[ J] . 北京工业大 学学报, 2021, 47(7) : 719-727, 814. 
ZHOU H, WANG Z L, SHEN H, et al. Theoretical analysis of the variation of soil strength and rigidity induced by pile penetration in soft clay [ J] . Journal of Beijing University of Technology, 2021, 47 ( 7) : 719 - 727, 814. 
[19] CAO L F, TEH C I, CHANG M F. Undrained cavity expansion in modified Cam clay I: theoretical analysis[ J] . Gotechnique, 2001, 51(4) : 323-334. 
[20] 徐玉峰. 路基压密注浆加固效果的研究[ J] . 公路交 通科技(应用技术版) , 2012, 8(4) : 41-43. 
XU Y F. Study on the effect of subgrade compaction grouting reinforcement[ J] . Highway Transportation Technology (Applied Technology Edition) , 2012, 8(4) : 41-43.

更新日期/Last Update: 2025-07-13