[1]邢海鹏,吴光华,王格,等.基于修正剑桥模型的土体压密注浆机理分析[J].郑州大学学报(工学版),2024,45(pre):2.[doi:10.13705/j.issn.1671-6833.2025.01.004]
 XING Haipeng,WU Guanghua,WANG Ge,et al.Mechanism Analysis of Soil Compaction Grouting Based on Modified Cam-clay Model[J].Journal of Zhengzhou University (Engineering Science),2024,45(pre):2.[doi:10.13705/j.issn.1671-6833.2025.01.004]
点击复制

基于修正剑桥模型的土体压密注浆机理分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年pre
页码:
2
栏目:
出版日期:
2024-11-30

文章信息/Info

Title:
Mechanism Analysis of Soil Compaction Grouting Based on Modified Cam-clay Model
作者:
邢海鹏12吴光华12王格1陈坤洋1李晓龙1张蓓1
(1.郑州大学 水利与交通学院,河南 郑州,450001;2.河南省赵口引黄灌区二期工程建设管理局,河南 开封,475000)
Author(s):
XING Haipeng12 WU Guanghua12 WANG Ge1 CHEN Kunyang1 LI Xiaolong1 ZHANG Bei1
(1. School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China 2. Construction Administration Bureau of Zhaokou Yellow River Diversion Irrigation Area Phase project in Henan Province , Kaifeng 475000, China)
关键词:
压密注浆修正剑桥模型数值模拟有限元挤密机理
Keywords:
compaction grouting modified Cam-clay model numerical simulation finite element compaction mechanism
分类号:
TV543+.7
DOI:
10.13705/j.issn.1671-6833.2025.01.004
文献标志码:
A
摘要:
现有压密注浆仿真方法仅能分析注浆后的应力分布,无法获得压密后土体孔隙比、密度等反映注浆挤密效果的参数信息,为此引入修正剑桥模型描述土体力学行为,基于弹塑性有限元理论,建立了一种模拟常密度浆液在土体中压密注浆过程的仿真方法,实现了对地层挤密效应更加全面直观的描述。以黏土、粉质黏土等低渗透性土为对象开展了压密注浆仿真分析,与解析解和试验结果的对比显示,不同注浆压力下土体径向应力、孔隙比模拟值与解析解的总体平均相对误差分别为4.04%、0.29%,不同埋深条件下土体弹性模量、孔隙比计算值与现场试验结果的平均相对误差分别为2.85%和5.69%,证明了该方法较好的适用性。在此基础上分析了注浆加固后浆柱周围土体密度、孔隙比、弹性模量等参数分布特征,结果表明,注浆深度1.5 m处,注浆压力从0.4 MPa增至1.0 MPa时,距注浆孔中心0.05 m处土体密度、弹性模量和孔隙比近似呈线性变化,平均变化率分别为0.148 g/cm3/MPa、0.808和-0.126 MPa-1;注浆压力0.4 MPa时,随着注浆深度增加,距注浆孔中心0.05 m处土体密度和弹性模量的增加率、孔隙比降低率均逐渐下降。总体来看,注浆加固后浆柱周围土体密度、弹性模量有较大提升,孔隙比明显降低,距注浆孔越远土体参数改变量越小,逐渐恢复至初始状态;相同注浆压力条件下,随着注浆深度增大,压密效果逐渐减弱。
Abstract:
The existing compaction grouting simulation method can only analyze the stress distribution after grouting, and cannot obtain the parameter information reflecting the compaction effect of grouting, such as the void ratio and density of soil after compaction. Therefore, the MCC is introduced to describe the mechanical property of soil, and based on the elastic-plastic finite element theory, a simulation method is established to simulate the compaction grouting process of constant density slurry in soil. A more comprehensive and intuitive description of the formation compaction effect is achieved. The compaction grouting simulation analysis was carried out on clay, silty clay and other low permeability soil. Compared with the analytical and experimental results, t he overall average relative errors of the simulated values and analytical solutions of radial stress and void ratio under different grouting pressures are 4.04% and 0.29% respectively , and the average relative errors between the calculated elastic modulus and void ratio and the field test results are 2.85% and 5.69% respectively, which proves the applicability of this method. On this basis, the distribution characteristics of soil density, void ratio and elastic modulus around the grouting column after grouting reinforcement are analyzed. The results show that when the grouting pressure increases from 0.4 MPa to 1.0 MPa at the grouting depth of 1.5 m, the soil density, elastic modulus and void ratio at the grouting hole center of 0.05 m approximate linear changes, and the average change rates are 0.148 g/cm3/MPa, 0.808 and -0.126 MPa-1, respectively. When the grouting pressure is 0.4 MPa, the increase rates of soil density and elastic modulus and the decrease rate of void ratio at 0.05 m from the center of the grouting hole gradually decrease with the increase of grouting depth. Overall, the density and elastic modulus of the soil around the grouting column are greatly increased after grouting reinforcement, and the void ratio is significantly reduced. The soil parameters change less with the distance from the grouting hole, and gradually return to the initial state. Under the same grouting pressure condition, with the increase of grouting depth, the compaction effect gradually weakens

参考文献/References:

[1] 李斌,方宏远,王复明.脱空排水管道高聚物修复前后力学特性分析[J].郑州大学学报(工学版),2019,40(01):62-66.

LI B,FANG H Y,WANG F M. Analysis of the mechanical characteristics of disengaging drainage pipe before and after polymer repairing[J]. Journal of Zhengzhou University (Engineering Science),2019,40(01):62-66.

[2] 李向红.CCG注浆技术的理论研究和应用研究[D].上海:同济大学,2002.

LI X H. Theoretical and applied research of compaction grouting technology[D]. Shanghai:Tongji University,2002.

[3] 巨建勋.土体压密注浆机理及其抬升作用的研究[D].湖南:中南大学,2007.

JU J X. Study on soil compression grouting mechanism and its lifting effect[D]. Hunan:Central South University,2007.

[4] 唐智伟,赵成刚.注浆抬升地层的机制:解析解及数值模拟分析[J].岩土力学,2008,29(6):1512-1516.

TANG Z W,ZHAO C G. Mechanisms of ground heave by grouting and analytical solutions & numerical modeling[J]. Rock and Soil Mechanics,2008,29(6):1512-1516.

[5] 王立中.柔性管加筋注浆新技术试验及应用研究[D].湖南:中南大学,2008.

WANG L Z. Test and application research on new technology of flexible pipe reinforcement grouting[D]. Hunan:Central South University,2008.

[6] 周子龙,赵云龙,陈钊,等.基于颗粒流方法的土体压密注浆细观机理[J].中南大学学报(自然科学版),2017,48(02):465-472.

ZHOU Z L,ZHAO Y L,CHEN Z,et al. Meso-mechanism of compaction grouting in soil based on particle flow method[J]. Journal of Central South University (Science and Technology),2017,48(02):465-472.

[7] WANG D,XING X,QU H,et al. Simulated radial expansion and heave caused by compaction grouting in noncohesive soils[J]. International Journal of Geomechanics,2015,15(4):04014069.

[8] SHRIVASTAVA N,ZEN K,SHUKLA S K. Modeling of compaction grouting technique with development of cylindrical cavity expansion problem in a finite medium[J]. International journal of geosynthetics and ground engineering,2017,3(4):1-12.

[9] SHRIVASTAVA N,ZEN K. Finite element modeling of compaction grouting on its densification and confining aspects[J]. Geotechnical and Geological Engineering,2018,36(4):2365-2378.

[10] 周凤玺,牟占霖,杨汝贤,等.不同排水条件下非饱和土中柱孔扩张问题的解析分析[J].力学学报,2021,53(05):1496-1509.

ZHOU F X,MU Z L,YANG R X,et al. Analytical analysis on the expansion of cylindrical cavity in unsaturated soils under different drainage conditions[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(05):1496-1509.

[11] ROSCOE K H,SCHOFIELD A N,THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Geotechnique,1963,13(03):211-240.

[12] BURLAND J B. The yielding and dilation of clay[J]. Geotechinique,1965,15(02):211-214.

[13] 叶飞,陈治,苟长飞,等.基于球孔扩张的盾构隧道壁后注浆压密模型[J].交通运输工程学报,2014,14(1):35-42.

YE F,CHEN Z,GOU C F,et al. Back-filled grouting compaction model of shield tunnel based on spherical cavity expansion[J]. Journal of Traffic and Transportation Engineering,2014,14(1):35-42.

[14] 吴悦,赵春风,王有宝,等.黏土中考虑土体卸荷效应的后注浆压密模型[J].哈尔滨工业大学学报,2020,52(11):17-79.

WU Y,ZHAO C F,WANG Y B,et al. Compaction grouting model in clay considering unloading effect[J]. Journal of Harbin Institute of Technology,2020,52(11):17-79.

[15] OWEN D,HINTON E. Finite elements in plasticity:theory and practice[M]. Pineridge Press,1980.

[16] 李镜培,周攀,李亮,等.饱和结构性黄土不排水柱孔扩张问题弹塑性解[J].同济大学学报(自然科学版),2021,49(2):163-172.

LI J P,ZHOU P,LI L,et al. Elastic-plastic solution for undrained expansion of cylindrical cavity in saturated structured loess[J]. Journal of Tongji University:Natural Science,2021,49(2):163-172.

[17] 周攀,李镜培,李亮,等.结构性黄土排水柱孔扩张问题弹塑性解析[J].岩石力学与工程学报,2021,40(1):175-186.

ZHOU P,LI J P,LI L,et al. Elastic-plastic solution for drained cylindrical cavity expansion in structured loess[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):175-186.

[18] 周航,王增亮,申航,等.软黏土中静压桩打桩过程对土体强度和刚度影响的理论分析[J].北京工业大学学报,2021,47(7):719-727,814.

ZHOU H,WANG Z L,SHEN H,et al. Theoretical analysis of the variation of soil strength and rigidity induced by pile penetration in soft clay[J]. Journal of Beijing University of Technology,2021,47(7):719-727,814.

[19] CAO L F ,TEH C I,CHANG M F. Undrained cavity expansion in modified Cam clay I: Theoretical analysis[J]. Geotechinique,2001,51(4):323-334.

[20] 徐玉峰.路基压密注浆加固效果的研究[J].公路交通科技(应用技术版),2012,8(4):41-43.


XU Y F. Study on reinforcement effect of subgrade compaction grouting[J]. Journal of Highway and Transportation Research and Development20128(4)41-43

更新日期/Last Update: 2024-10-10