[1]何 闯,赵钦新,梁志远.具有扰流结构的风冷型锂电池包热管理系统优化[J].郑州大学学报(工学版),2025,46(01):90-97.[doi:10.13705/j.issn.1671-6833.2025.01.002]
 HE Chuang,ZHAO Qinxin,LIANG Zhiyuan.Performance Optimization of Air-cooled Lithium Battery Pack Thermal Management System with Turbulence Structure[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):90-97.[doi:10.13705/j.issn.1671-6833.2025.01.002]
点击复制

具有扰流结构的风冷型锂电池包热管理系统优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
90-97
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Performance Optimization of Air-cooled Lithium Battery Pack Thermal Management System with Turbulence Structure
文章编号:
1671-6833(2025)01-0090-08
作者:
何 闯 赵钦新 梁志远
西安交通大学 热流科学与工程教育部重点实验室,陕西 西安 710049
Author(s):
HE Chuang ZHAO Qinxin LIANG Zhiyuan
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
锂电池 扰流结构 热管理 入口空气流速 温差
Keywords:
lithium battery turbulent structure thermal management inlet air speed temperature difference
分类号:
TK124U463.1
DOI:
10.13705/j.issn.1671-6833.2025.01.002
文献标志码:
A
摘要:
基于常见新能源车结构设计了一种车载式风冷型锂电池包,利用有限元仿真对风冷型锂电池热管理系统进行模拟计算。结果表明:入口空气流速2 m/s的条件下,顺排和叉排两种结构的最大温差分别为6.96 ℃和6.29 ℃,叉排结构下最大温差有所降低;增加扰流板为空气流场创造扰流结构,最大温差为5.69 ℃,相比叉排结构最大温差降低了0.60 ℃;入口空气流速大于4 m/s时,最大温差低于5 ℃,满足锂电池最优放电效率;扰流板布置为对称结构时电池包具有最优的冷却性能,电池的最高温度和最大温差明显低于其他排布方式;入口空气流速与电池包冷却性能呈正相关,入口空气流速达到6 m/s时达到最优冷却效果,此后继续增大入口空气流速冷却性能变化幅值减小。所设计的18650锂电池包在隔板间距为对称排布下具有最优的扰流冷却性能,控制入口空气流速大于4 m/s时可以使电池在最优放电效率下运行。
Abstract:
The design and simulation of a vehicle-mounted air-cooled lithium battery pack for new energy vehicles were presented. Finite element simulation was employed to analyze the thermal management system of the air-cooled lithium battery pack. The results indicated that with an inlet air velocity of 2 m/s, the maximum temperature differences for the parallel and serpentine structures were 6.96 ℃ and 6.29 ℃, respectively, with a reduction in the maximum temperature difference for the serpentine structure. Introducing flow baffles to create turbulent structures reduced the maximum temperature difference to 5.69 ℃ compared to the serpentine structure, representing a decrease of 0.60 ℃ in the maximum temperature difference. When the inlet air velocity exceeded 4 m/s, the maximum temperature difference was below 5 ℃, meeting the optimal discharge efficiency of lithium batteries. The battery pack exhibited optimal cooling performance when the flow baffles were arranged in a symmetric structure, with significantly lower maximum temperature and temperature differences compared to other layout arrangements. Furthermore, the inlet air velocity was positively correlated with the cooling performance of the battery pack. The optimal cooling effect was achieved when the inlet air velocity reached 6 m/s, after which the change in cooling performance diminished with further increases in inlet air velocity. In conclusion, the designed 18650 lithium battery pack demonstrated optimal flow disturbance cooling performance with symmetric layout spacing, and controlling the inlet air velocity above 4 m/s enabled the battery to operate at optimal discharge efficiency.

参考文献/References:

[1]郭茶秀,魏金宇.电池排布方式对21700锂电池相变热管理系统的影响[J].郑州大学学报(工学版), 2023,44(2):91-97. 

GUOCX,WEI JY. Influence of different arrangement on phase change thermal management system of 21700 lithium battery[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 91-97. 
[2]PADALKAR A B, CHAUDHARI M B, KORE K B, et al. Effects of circumferential fin on cooling performance improvement of forced air-cooled battery pack[J]. Applied Thermal Engineering, 2024, 238: 122013. 
[3]SADEH M, TOUSI M, SARCHAMI A, et al. A novel hybrid liquid-cooled battery thermal management system for electric vehicles in highway fuel-economy condition [J]. Journal of Energy Storage, 2024, 86: 111195. 
[4]尹少武, 康鹏, 韩嘉维, 等. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529. 
YIN S W, KANG P, HAN J W, et al. Thermal management performance of lithium-ion battery based on phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5518-5529. 
[5]LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113.
[6]AN Z G, GAO W L, ZHANG J Y, et al. Enhancing heat dissipation of thermal management system utilizing modular dual bionic cold plates for prismatic lithium batteries[J]. Journal of Energy Storage,2024,87: 111541. 
[7]WANG Z W, ZHANG H Y, XIA X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure[J]. International Journal of Heat and Mass Transfer, 2017, 109: 958-970. 
[8]BABAPOOR A, AZIZI M, KARIMI G. Thermal management of a Li-ion battery using carbon fiber-PCM composites [J]. Applied Thermal Engineering, 2015, 82: 281-290. 
[9]张国庆, 饶中浩, 吴忠杰, 等. 采用相变材料冷却的动力电池组的散热性能[J]. 化工进展, 2009, 28(1): 23-26, 40. 
ZHANG G Q, RAO Z H, WU Z J, et al. Experimental investigation on the heat dissipation effect of power battery pack cooled with phase change materials[J]. Chemical Industry and Engineering Progress, 2009, 28(1): 2326, 40. 
[10] GUO Z Y, TIAN C Q, GONG K Y, et al. Experimental study on the dynamic response of voltage and temperature of an open-cathode air-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2024, 57: 601-615. 
[11]杨孝才, 贾秋红, 屈翔, 等. 操作参数对质子交换膜燃料电池冷却效果分析[J]. 郑州大学学报(工学版), 2022, 43(4): 53-59. 
YANG X C, JIA Q H, QU X, et al. Analysis of cooling effect of operating parameters on proton exchange membrane fuel cells[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 53-59. 
[12] KRISHNA J, KISHORE P S, SOLOMON A B. Heat pipe with nano enhanced-PCM for electronic cooling application [J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. 
[13] PISE G A, SALVE S S, PISE A T, et al. Investigation of solar heat pipe collector using nanofluid and surfactant[J]. Energy Procedia, 2016, 90: 481-491. 
[14] YANG T R, YANG N X, ZHANG X W, et al. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack[J]. International Journal of Thermal Sciences, 2016, 108: 132-144. 
[15] LIU Y Z, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: 113426. 
[16]宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理系统仿真[J]. 化工进展, 2017, 36(增刊1): 187-194. 
SONG J J, WANG Y C, WANG T. Simulation of layered air cooling thermal management system for lithium-ion battery pack[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 187-194. 
[17]杨龙博. 交互式风冷动力电池热管理系统设计与研究[D]. 北京: 北京理工大学, 2018. 
YANG L B. Design and research of reciprocating aircooled power battery thermal management system[D].Beijing: Beijing Institute of Technology, 2018. 
[18]张志杰, 李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术, 2010, 34(2): 128-130. ZHANG Z J, LI M D. Effect of internal resistance on temperatre rising of lithium-ion battery[J]. Chinese Journal of Power Sources, 2010, 34(2): 128-130. 
[19] RAO Z H, HUO Y T, LIU X J, et al. Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam[J]. Journal of the Energy Institute, 2015, 88(3): 241-246. 
[20] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. 
[21] JEON D H, BAEK S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle[J]. Energy Conversion and Management, 2011, 52(8/9): 2973-2981.

更新日期/Last Update: 2024-12-31