[1]李晓龙,栗鹏超,刘小锋,等.富水粉细砂层联络通道顶管法施工地表沉降分析[J].郑州大学学报(工学版),2025,46(01):67-74.[doi:10.13705/j.issn.1671-6833.2025.01.009]
 LI Xiaolong,LI Pengchao,LIU Xiaofeng,et al.Analysis on Surface Settlement of Pipe Jacking Method for Construction of Contact Channel in Water-rich Silty Fine Sand Layer[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):67-74.[doi:10.13705/j.issn.1671-6833.2025.01.009]
点击复制

富水粉细砂层联络通道顶管法施工地表沉降分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
67-74
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Analysis on Surface Settlement of Pipe Jacking Method for Construction of Contact Channel in Water-rich Silty Fine Sand Layer
文章编号:
1671-6833(2025)01-0067-08
作者:
李晓龙1 栗鹏超1 刘小锋1 孙立军2 郭长龙2 何 况3
1.郑州大学 水利与交通学院,河南 郑州 450001;2.中铁十四局集团有限公司,山东 济南 250101;3.郑州地铁集团有限公司,河南 郑州 450000
Author(s):
LI Xiaolong1 LI Pengchao1 LIU Xiaofeng1 SUN Lijun2 GUO Changlong2 HE Kuang3
1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2.China Railway 14th Bureau Group Corporation Limited, Jinan 250101, China; 3.Zhengzhou Metro Group Corporation Limited, Zhengzhou 450000, China
关键词:
联络通道 顶管法 数值模拟 现场监测 地表沉降
Keywords:
contact channel pipe jacking method numerical simulation field monitoring surface settlement
分类号:
U231.3
DOI:
10.13705/j.issn.1671-6833.2025.01.009
文献标志码:
A
摘要:
为研究富水粉细砂层地铁联络通道顶管法施工对地表沉降的影响,对郑州地铁12号线08工区埋深15 m、长7.5 m的联络通道在顶管法施工过程中的地表沉降进行了监测,并结合“地层-主隧道-内支撑-联络通道”体系三维数值模型,深入分析了顶管掘进过程中地表沉降的时空演化规律。结果表明:地表沉降量随着顶管机的推进逐渐增大,顶推到位后达到最大沉降值,其中台车就位、始发破洞及接收破洞阶段产生的沉降增量明显大于其他开挖阶段,设备拆除后,受卸载作用影响,地层产生一定量回弹,沉降值减小;地表沉降曲面呈漏斗状,沿联络通道中心线方向左右对称,沿垂直于中心线方向不对称,最大沉降值位于纵向距离联络通道中心靠近始发端3 m处;联络通道顶管法施工对地表横向影响范围更大,地表沉降集中发生区域近似椭圆形,其长轴垂直于联络通道中心线。
Abstract:
In order to study the influence of pipe jacking method on surface settlement of subway contact channel in water-rich silty sand layer, the surface settlement of contact channel with 15 m depth and 7.5 m length in 08 work area of Zhengzhou Metro Line 12 during pipe jacking construction was monitored, and the spatial and temporal evolution law of surface settlement during pipe jacking construction was analyzed in combination with 3D numerical simulation of "stratum-main tunnel-inner support-contact channel " system. The surface settlement increased gradually with the pushing of pipe jacking machine, and reached the maximum settlement value after pushing in place, in which the settlement increment produced in the stage of trolley positioning, starting hole breaking and receiving hole breaking was obviously larger than that in other excavation stages. After the equipment was dismantled, the stratum would rebound a certain amount due to unloading effect, and the settlement value would decrease. The surface settlement curve was funnel-shaped, symmetrical along the direction perpendicular to the center line of the contact channel, asymmetrical along the direction parallel to the center line, and the maximum settlement value was located 3 m away from the center of the contact channel and close to the starting end in the longitudinal direction. The horizontal influence range of the contact channel pipe jacking method on the surface was larger, and the concentrated area of the surface settlement was approximately elliptical, and its long axis was perpendicular to the axis of the contact channel.

参考文献/References:

[1]王晖, 竺维彬, 李大勇. 富水砂层中联络通道施工工法及其控制措施[J]. 铁道工程学报, 2010, 27(9): 82-87. 

WANG H, ZHU W B, LI D Y. Construction method and control measure for connecting passage in water-enriched sand bed[J]. Journal of Railway Engineering Society, 2010, 27(9): 82-87. 
[2]田海洋. 冻结法加固技术在富水粉细砂层联络通道施工中的应用[J]. 现代隧道技术, 2022, 59(增刊2): 214-222. 
TIAN H Y. Application of freezing method in connection channel construction in water-rich silty sand layer[J]. Modern Tunnelling Technology, 2022, 59(S2): 214-222. 
[3]梅源, 赵良杰, 周东波, 等. 冻结法在富水砂层暗挖施工中的应用[J]. 中国铁道科学, 2020, 41(4): 1-10. 
MEI Y, ZHAO L J, ZHOU D B, et al. Application of AGF in underground excavation construction of water-rich sand layer[J]. China Railway Science, 2020, 41(4): 1-10. 
[4]张英智, 阮雷, 韦晓霞, 等. 富水砂层盾构隧道联络通道人工冻结法地层变化特性研究[J]. 隧道建设(中英文), 2021, 41(增刊2): 106-114. 
ZHANG Y Z, RUAN L, WEI X X, et al. Characteristics of stratum variations for connecting passage of shield tunnel with artificial freezing method in water-rich sand stratum[J]. Tunnel Construction, 2021, 41 (S2): 106-114. 
[5]王晖, 李大勇, 李健, 等. 地铁联络通道冻结法施工三维数值模拟分析[J]. 地下空间与工程学报, 2011, 7(增刊2): 1589-1593. 
WANG H, LI D Y, LI J, et al. Analysis of 3D numerical simulation in ground freezing method for a cross passage of the subway[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2): 1589-1593. 
[6]郜新军, 李铭远, 张景伟, 等. 富水粉质黏土中地铁联络通道冻结法试验研究[J]. 岩石力学与工程学报, 2021, 40(6): 1267-1276. 
GAO X J, LI M Y, ZHANG J W, et al. Field research on artificial freezing of subway cross passages in waterrich silty clay layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1267-1276. 
[7]LIU X, SHEN Y P, ZHANG Z C, et al. Field measurement and numerical investigation of artificial ground freezing for the construction of a subway cross passage under groundwater flow[J]. Transportation Geotechnics, 2022, 37: 100869. 
[8]黄大维,陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793. 
HUANG D W, CHEN H H, XU C J, et al. Experimental study on influences of shield machine reception on existing shield tunnels during construction of connecting channels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. 
[9]孙龙飞, 陈振雷, 李坚成. 盾构法开挖地铁联络通道对地表沉降的影响研究[J]. 岩土工程技术, 2019, 33 (4): 197-201, 213. 
SUN L F, CHEN Z L, LI J C. Effects of surface subsidence in excavation of metro crossing passage tunnel by shield machine[J]. Geotechnical Engineering Technique, 2019, 33(4): 197-201, 213. 
[10]卫佳莺, 马永政, 莫振泽, 等. 机械法联络通道T接施工地层隆沉变化特征研究———以无锡地铁3号线顶管法联络通道T接施工示范工程为例[J]. 隧道建设(中英文), 2020, 40(增刊2): 136-143. 
WEI J Y, MA Y Z, MO Z Z, et al. Study on influence of ground settlement in T-joint connecting passage with mechanical pipe jacking method: with the example of the demonstration project of T-joint construction of connecting passage with pipe jacking method in Wuxi Metro Line 3 [J]. Tunnel Construction, 2020, 40(S2): 136-143. 
[11]胡威, 黄强, 李海波, 等. 机械法联络通道施工对T接部位沉降影响的实测与数值分析[J]. 施工技术(中英文), 2022, 51(13): 68-74, 80. 
HU W, HUANG Q, LI H B, et al. Actual measurement and numerical analysis of influence of mechanical connection channel construction on settlement of T-junction[J]. Construction Technology, 2022, 51(13): 68-74, 80. 
[12]梅清俊, 朱瑶宏, 马永政, 等. 滨海软土地层机械法联络通道施工影响监测分析[J]. 宁波大学学报(理工版), 2021, 34(2): 73-79. 
MEI Q J, ZHU Y H, MA Y Z, et al. Monitoring and analysis of the influence of mechanical connecting passage construction in coastal soft soil layer[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2021, 34(2): 73-79.
[13]吴波, 许杰, 黄惟, 等. 富水砂层刚度参数敏感性分析及地表沉降预测[J]. 中国安全生产科学技术, 2020, 16(9): 96-102. 
WU B, XU J, HUANG W, et al. Sensitivity analysis of stiffness parameter and prediction of ground settlement for watered sandy stratum[J]. Journal of Safety Science and Technology, 2020, 16(9): 96-102. 
[14]吴宏, 叶治, 张宇亭, 等. 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216. 
WU H, YE Z, ZHANG Y T, et al. Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities[J]. Rock and Soil Mechanics, 2023, 44(4): 1204-1216. 
[15]郜新军, 段鹏辉, 王磊. 基坑开挖对邻近管线变形影响及控制措施研究[J]. 郑州大学学报(工学版), 2020, 41(5): 66-71. 
GAO X J, DUAN P H, WANG L. The influence of foundation pit excavation on deformation of adjacent underground pipelines and control measures[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (5): 66-71. 
[16]姚超凡, 晏启祥, 何川, 等. 盾构隧道内力分析方法的对比研究[J]. 铁道标准设计, 2013, 57(12): 95-99. 
YAO C F, YAN Q X, HE C, et al. Comparative study on internal force analysis methods of shield tunnel[J]. Railway Standard Design, 2013, 57(12): 95-99. 
[17]吴华州, 李兴高, 蔡志勇. 复杂地质环境下异形交叉暗挖通道开挖数值模拟[J]. 现代隧道技术, 2021, 58 (增刊1): 303-312. 
WU H Z, LI X G, CAI Z Y. Numerical simulation of excavation of irregularly crossed mined tunnels in complex geological environment[J]. Modern Tunnelling Technology, 2021, 58(S1): 303-312.

更新日期/Last Update: 2024-12-31