[1]向伟宁,陈云良,熊 顺,等.不同湍流模型对环形射流泵流场模拟的影响[J].郑州大学学报(工学版),2025,46(01):113-118.[doi:10.13705/j.issn.1671-6833.2024.04.013]
 XIANG Weining,CHEN Yunliang,XIONG Shun,et al.Influence of Turbulence Models on the Flow Field Simulation of Annular Jet Pump[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):113-118.[doi:10.13705/j.issn.1671-6833.2024.04.013]
点击复制

不同湍流模型对环形射流泵流场模拟的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
113-118
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Influence of Turbulence Models on the Flow Field Simulation of Annular Jet Pump
文章编号:
1671-6833(2025)01-0113-06
作者:
向伟宁 陈云良 熊 顺 张 艳
四川大学 水利水电学院, 四川 成都 610065
Author(s):
XIANG Weining CHEN Yunliang XIONG Shun ZHANG Yan
College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
关键词:
环形射流泵 湍流模型 性能 回流区 熵产理论
Keywords:
annular jet pump turbulence model performance recirculation zone entropy production theory
分类号:
TH38
DOI:
10.13705/j.issn.1671-6833.2024.04.013
文献标志码:
A
摘要:
为准确反映环形射流泵吸入室内流体剧烈的动量交换对流场的影响,将RNG k-ε (RNG)、Realizable k-ε (RKE)、RSM、Standard k-ω (SKW)、SST k-ω (SST)这5种湍流模型和3种壁面处理方法进行组合对比计算,并开展水力实验进行验证。结果表明:不同壁面函数对环形射流泵性能和壁面压力系数的计算影响很小;相较于RNG、SKW、SST,RKE模型或RSM模型结合可扩展壁面函数(ScWF)的计算结果与实测更吻合。对比模拟流场发现:低流量比工况下不同湍流模型性能预测结果与模拟的回流区分布范围相关,模拟出来的回流区范围越大,预测的环形射流泵性能越低。基于熵产理论分析认为,环形射流泵的能量损失主要源于分布在壁面和混合剪切层的湍动熵产,高流量比工况下RSM模型计算得到的湍动熵产率偏高,是其预测性能低于RKE模型的主要原因。
Abstract:
To reflect the influence of intense momentum exchange of the fluid in the annular jet pump suction chamber accurately, a comparison calculation using different turbulence models and wall functions was conducted, and hydraulic experiments were carried out to verify the results. The results showed that different wall functions had little effect on the performance and wall pressure coefficient calculation of the annular jet pump.Compared to the RNG k-ε (RNG), Standard k-ω (SKW), SST k-ω (SST)models, the results calculated using the Realizable k-ε (RKE) model or Reynolds stress model (RSM) combined with the scalable wall function (ScWF) was more consistent with the measurements.By comparing the simulated flow field, it was found that the performance prediction results of different turbulence models with low flow ratio conditions were related to the distribution range of the recirculation zone simulated. The larger the range of the recirculation zone simulated, the lower the predicted performance of the annular jet pump had. Based on the analysis of entropy production theory, it was believed that the energy loss of the annular jet pump was mainly caused by the turbulent entropy production distributed in the wall and the mixed shear layer. With high flow rate conditions, the high turbulent entropy production rate calculated by the RSM model was the main reason for its lower prediction performance compared to the RKE model.

参考文献/References:

[1]熊顺, 陈云良, 向伟宁, 等. 喷管结构对环形射流泵流场的影响[J]. 中国农村水利水电, 2023(10): 121128. 

XIONG S, CHEN Y L, XIANG W N, et al. Influence of jet pipe structure on flow field of annular jet pump[J]. China Rural Water and Hydropower, 2023(10): 121128. 
[2]刘华东, 靳朝阳, 王定标, 等. 旁路结构对亚临界喷射器引射效率的影响[J]. 郑州大学学报(工学版), 2023, 44(6): 48-53. 
LIU H D, JIN Z Y, WANG D B, et al. Influence analysis of the bypass structure on entrainment ratio of a subcritical ejector[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 48-53. 
[3]KOTAK V, PATHROSE A, SENGUPTA S, et al. Experimental investigation of jet pump performance used for high flow amplification in nuclear applications[J]. Nuclear Engineering and Technology, 2023, 55(10): 35493558. 
[4]XIAO L Z, LONG X P, LI L, et al. Movement characteristics of fish in a jet fish pump[J]. Ocean Engineering, 2015, 108: 480-492. 
[5]LONG X P, XU M S, WANG J, et al. An experimental study of cavitation damage on tissue of Carassius auratus in a jet fish pump[J]. Ocean Engineering, 2019, 174: 43-50. 
[6]XU M S, LONG X P, MOU J G, et al. Impact of pressure gradients on fish scales in a jet fish pump[J]. Biosystems Engineering, 2020, 191: 27-34. 
[7]FAN J, EVES J, THOMPSON H M, et al. Computational fluid dynamic analysis and design optimization of jet pumps[J]. Computers & Fluids, 2011, 46(1): 212217. 
[8]周凌九, 袁玲丽. 射流泵内部流动计算中不同湍流模拟方法的比较[J]. 排灌机械工程学报, 2013, 31 (1): 25-30. 
ZHOU L J, YUAN L L. Comparison of internal flows in jet pump predicted by various turbulence models[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(1): 25-30. 
[9]杨雪龙, 龙新平, 肖龙洲, 等. 不同湍流模型对射流泵内部流场模拟的影响[J]. 排灌机械工程学报, 2013, 31(2): 98-102. 
YANG X L, LONG X P, XIAO L Z, et al. Influence of different turbulence models on simulation of internal flow field of jet pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(2): 98-102. 
[10] KWON O B, KIM M K, KWON H C, et al. Two-dimensional numerical simulations on the performance of an annular jet pump[J]. Journal of Visualization, 2002, 5 (1): 21-28. 
[11] YANG X L, LONG X P, KANG Y, et al. Application of constant rate of velocity or pressure change method to improve annular jet pump performance[J]. International Journal of Fluid Machinery and Systems, 2013, 6(3): 137-143.
[12]肖龙洲, 蔡标华, 胡洋. 不同吸入角度环形射流泵回流区域研究[J]. 流体机械, 2020, 48(2): 48-52. 
XIAO L Z, CAI B H, HU Y. Numerical investigation on the recirculation zone in annular jet pump at different angles of the suction chamber[J]. Fluid Machinery, 2020, 48(2): 48-52. 
[13]WANG X D, CHEN Y L, LI M Q, et al. Numerical investigation of the cavitation performance of annular jet pumps with different profiles of suction chamber and throat inlet[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 1416-1428. 
[14] GINTING B M. Central-upwind scheme for 2D turbulent shallow flows using high-resolution meshes with scalable wall functions[J]. Computers & Fluids, 2019, 179: 394421. 
[15] YANG S J, LI P X, TAO R, et al. Investigate the full characteristic of a centrifugal pump-as-turbine (PAT) in turbine and reverse pump modes[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 1-18. 
[16] CHEN T P, WEI X Z, BIE R S, et al. A numerical study on the energy dissipation mechanisms of a two-stage vertical pump as turbine using entropy generation theory [J]. Journal of Applied Fluid Mechanics, 2024, 17(1): 159-175.
[17] BEJAN A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes[M]. Boca Raton: CRC Press, 1996. 
[18] KOCK F, HERWIG H. Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2205-2215.

相似文献/References:

[1]魏新利,任杰,王定标,等.搅拌反应器流场的数值模拟[J].郑州大学学报(工学版),2006,27(02):52.[doi:10.3969/j.issn.1671-6833.2006.02.013]
 WEI Xinli,Ren Jie,Wang Dingping,et al.Numerical simulation of the flow field of a stirred reactor[J].Journal of Zhengzhou University (Engineering Science),2006,27(01):52.[doi:10.3969/j.issn.1671-6833.2006.02.013]
[2]魏新利,张海红,王定标..旋风分离器流场的数值计算方法研究[J].郑州大学学报(工学版),2005,26(01):57.[doi:10.3969/j.issn.1671-6833.2005.01.015]
 WEI Xinli,ZHANG Haihong,Wang Dingjiao.Research on numerical calculation method of cyclone flow field[J].Journal of Zhengzhou University (Engineering Science),2005,26(01):57.[doi:10.3969/j.issn.1671-6833.2005.01.015]

更新日期/Last Update: 2024-12-31