[1]于永洁,杜昱錡,黄仕磊,等.基于背衬层匹配的压电式柔性超声传感器优化[J].郑州大学学报(工学版),2025,46(01):98-104.[doi:10.13705/j.issn.1671-6833.2025.01.006]
 YU Yongjie,DU Yuqi,HUANG Shilei,et al.Optimization of Piezoelectric Flexible Ultrasonic Sensors Based on Backing Layer Matching[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):98-104.[doi:10.13705/j.issn.1671-6833.2025.01.006]
点击复制

基于背衬层匹配的压电式柔性超声传感器优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
98-104
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Optimization of Piezoelectric Flexible Ultrasonic Sensors Based on Backing Layer Matching
文章编号:
1671-6833(2025)01-0098-07
作者:
于永洁1 杜昱錡1 黄仕磊2 甘芳吉1
1.四川大学 机械工程学院,四川 成都 610065;2.成都大学 电子信息与电气工程学院,四川 成都 610106
Author(s):
YU Yongjie1 DU Yuqi1 HUANG Shilei2 GAN Fangji1
1.School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;2.School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China
关键词:
柔性超声传感器 背衬层匹配 阻抗匹配 信噪比
Keywords:
flexible ultrasonic sensors backing layer matching impedance matching signal-to-noise ratio
分类号:
TP212TH89
DOI:
10.13705/j.issn.1671-6833.2025.01.006
文献标志码:
A
摘要:
基于聚偏氟乙烯(PVDF)压电薄膜的柔性超声传感器具有体积小、质量轻、易于阵列化等优点,但容易受到背部杂波干扰和阻抗不匹配的影响,导致回波信号频率成分复杂且信噪比较低。为有效吸收传感器背部杂波,提升超声波单向辐射的能力,利用钨粉和硅胶设计针对柔性超声传感器的背衬层,在保持传感器整体柔性的同时使传感器的信号电压幅值提高了200%。其次,根据柔性超声传感器的电学特性提出了柔性超声传感器阻抗匹配优化方法,并通过实验获得最佳匹配参数,使传感器的信噪比从2 dB提高到30 dB。优化后的柔性超声传感器具有宽频带、高频率、窄脉冲的优良性能,对不同曲率、不同壁厚的管道试件厚度的测量实验结果表明其可以达到0.01 mm的精度。
Abstract:
Even with the advantages of small size, light weight, and easy matrixing, flexible ultrasonic sensors based on polyvinylidene fluoride (PVDF) piezoelectric film are susceptible to back clutter and impedance mismatching, resulting in a complex frequency component of the return signal and a low signal-to-noise ratio. In order to effectively absorb the stray waves at the back of the sensor and improve the ability of unidirectional radiation of ultrasonic tungsten powder and silica gel were used to design the backing layer for flexible ultrasonic sensors, which could increase the signal voltage amplitude of the sensor by 200% while maintaining the overall flexibility of the transducer. Secondly, according to the electrical characteristics of the flexible ultrasonic sensor, an impedance matching method for flexible ultrasonic sensors was proposed, and the best matching parameters were obtained through experiments, so that the signal-to-noise ratio of the sensor was increased from 2 dB to 30 dB. The optimized flexible ultrasonic sensors had the excellent performance of wide bandwidth, high frequency, narrow pulse. The experimental results of the measurement of the thickness of pipe test specimens with different curvatures and wall thicknesses showed that it could reach the accuracy of 0.01 mm.

参考文献/References:

[1]BOWEN C R, BRADLEY L R, ALMOND D P, et al. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components[J]. Ultrasonics, 2008, 48 (5): 367-375. 

[2]HARVEY G, GACHAGAN A, MACKERSIE J W, et al. Flexible ultrasonic transducers incorporating piezoelectric fibres[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(9): 1999-2009. 
[3]ZHEN L Y, LIU Z D, LIU Z T, et al. High-density flexible piezoelectric sensor array with double working modes [J]. IEEE Sensors Journal, 2023, 23(5): 5270-5277. 
[4]LUO Q, WANG H, XU D. The research of corrosion monitoring on pipe based on flexible ultrasound sensor[C]∥ Annual Conference of the British Institute of Non-Destructive Testing. Northampton: BINDT, 2014: 135-142. 
[5]李珺, 张峰, 贺西平, 等. 换能器匹配层参数的选定[J]. 陕西师范大学学报(自然科学版), 2009,37(5):38-41. 
LI J, ZHANG F, HE X P, et al. The parameters selection of matching layer of ultrasonic transducers[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2009,37(5):38-41. 
[6]吴锦川, 蔡恒辉. 一种制作高阻抗背衬材料的新方法[J]. 声学技术, 2008, 27(2): 214-216. 
WU J C, CAI H H. New technique for manufacturing high impedance backing composites [J]. Technical Acoustics, 2008, 27(2): 214-216. 
[7]POLK E. Impedance matching circuit for piezoelectric transducers[D]. Cambridge: Massachusetts Institute of Technology, 1978. 
[8]EL-DAHSHAN A, AHMED H N, EL-TAGER A. An interactive approach to the design of adaptive impedance matching circuits[C]∥2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE). Piscataway: IEEE, 2011: 607-610. 
[9]苟阳, 付欣. 随钻声波发射换能器宽频阻抗匹配设计及实验[J]. 仪器仪表学报, 2022, 43(3): 186-193. 
GOU Y, FU X. Broadband impedance matching design and experiment for acoustic while drilling transducer[J]. Chinese Journal of Scientific Instrument, 2022, 43(3): 186-193. 
[10] RATHOD V T. A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers[J]. Electronics, 2019, 8(2): 1-32. 
[11]杨剑, 高成强, 刘晓方. 超声激励方式对检测信号的影响[J]. 无损检测, 2010, 32(1): 36-38. 
YANG J, GAO C Q, LIU X F. Affect of different simulation mode on ultrasonic testing signal[J]. Nondestructive Testing, 2010, 32(1): 36-38. 
[12]徐广春. 超声显微检测技术[M]. 北京:科学出版社: 2021. 
XU G C. Ultrasonic microscopic testing technology[M]. Beijing: Science Press:2021. 
[13]王翥, 刘春龙, 罗清华. 超声波传感器特性分析与测试方法的研究[J]. 郑州大学学报(工学版), 2020, 41(2): 13-18. 
WANG Z, LIU C L, LUO Q H. Research on ultrasonic sensors characteristics and testing method[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(2): 13-18. 
[14]徐丹君. 基于柔性超声传感器的管道腐蚀监测研究[D]. 南京: 南京航空航天大学, 2013. 
XU D J. The research of corrosion monitoring on pipe based on flexible ultrasound sensor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.

更新日期/Last Update: 2024-12-31