[1]于永洁,杜昱錡,黄仕磊,等.基于背衬层匹配的压电式柔性超声传感器优化[J].郑州大学学报(工学版),2024,45(pre):2.[doi:10. 13705 / j. issn. 1671-6833. 2025. 01. 006]
 YU Yongjie,DU Yuqi,HUANG Shilei,et al.Optimization of Piezoelectric Flexible Ultrasonic Sensors Based on Backing Layer Matching[J].Journal of Zhengzhou University (Engineering Science),2024,45(pre):2.[doi:10. 13705 / j. issn. 1671-6833. 2025. 01. 006]
点击复制

基于背衬层匹配的压电式柔性超声传感器优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年pre
页码:
2
栏目:
出版日期:
2024-12-31

文章信息/Info

Title:
Optimization of Piezoelectric Flexible Ultrasonic Sensors Based on Backing Layer Matching
作者:
于永洁杜昱錡黄仕磊甘芳吉
(四川大学 机械工程学院,四川 成都610000)
Author(s):
YU YongjieDU YuqiHUANG ShileiGAN Fangji
关键词:
柔性超声传感器背衬层匹配阻抗匹配信噪比
Keywords:
Flexible ultrasonic transducers Backing layer matching Impedance matching Signal-to-noise ratio
分类号:
TP212;TH89
DOI:
10. 13705 / j. issn. 1671-6833. 2025. 01. 006
文献标志码:
A
摘要:
基于聚偏氟乙烯(PVDF)压电薄膜的柔性超声传感器具有易于矩阵化、体积小、质量轻、盲区小等优点,但容易受到背部杂波干扰和阻抗不匹配的影响,导致回波信号频率成分复杂且信噪比较低。为有效吸收传感器背部杂波,提升声能单向辐射的能力,提出利用钨粉和硅胶设计针对柔性超声传感器的背衬层,在保持传感器整体柔性的同时使传感器的信号幅值提高了300 %。其次,根据柔性超声传感器的电学特性提出了柔性超声传感器阻抗匹配优化方法,并通过梯度实验获得最佳匹配参数,使传感器的信噪比从2 dB提高到30 dB。优化后的柔性超声传感器具有宽频带、高频率、窄脉冲的优良性能,对不同曲率、不同壁厚的管道试件厚度测量实验结果表明其可以达到0.01 mm的精度。
Abstract:
Flexible ultrasound transducers based on polyvinylidene fluoride (PVDF) piezoelectric film have the advantages of easy matrixing, small size, light weight, and small blind area, but are susceptible to back clutter interference and impedance mismatch, resulting in a complex frequency component of the return signal and a low signal-to-noise ratio. In order to effectively absorb the stray waves at the back of the transducer and improve the ability of unidirectional radiation of acoustic energy, it is proposed to use tungsten powder and silica gel to design the backing layer for flexible ultrasonic transducers, which increases the signal amplitude of the transducer by 300 % while maintaining the overall flexibility of the transducer. Secondly, according to the electrical characteristics of the flexible ultrasonic transducer impedance matching optimization method for flexible ultrasonic transducers is proposed, and the best matching parameters are obtained through gradient experiments, so that the signal-to-noise ratio of the transducer is increased from 2 dB to 30 dB. optimized flexible ultrasonic transducers have the excellent performance of wide bandwidth, high frequency, narrow pulse, and the experimental results of the measurement of the thickness of pipe test specimens with different curvatures and wall thicknesses show that it can reach the accuracy of 0.01 mm.

参考文献/References:

[1].Bowen C R, Bradley L R, Almond D P, et al. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components[J]. Ultrasonics, 2008,48(5):367-375.
[2].Harvey G, Gachagan A, Mackersie J W, et al. Flexible ultrasonic transducers incorporating piezoelectric fibres[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2009,56(9):1999-2009.
[3].Zhen L, Liu Z, Liu Z, et al. High-Density Flexible Piezoelectric Sensor Array With Double Working Modes[J]. IEEE Sensors Journal, 2023,23(5):5270-5277.
[4].Luo Q, Wang H, Xu D. The Research of Corrosion Monitoring on Pipe based on Flexible Ultrasound Sensor: Annual Conference of the British Institute of Non-Destructive Testing, 2014[C].
[5].李珺, 张峰, 贺西平, 等. 换能器薄层介质参数的选定[J]. 陕西师范大学学报(自然科学版), 2009,37(05):38-41.
LI J, ZHANG F, HE X P, et al. The parameters selection of matching layer of ultrasonic transducers[J]. Journal of Shaanxi Normal University (Natural Science edition), 2009,37(05):38-41.
[6].吴锦川, 蔡恒辉. 一种制作高阻抗背衬材料的新方法[J]. 声学技术, 2008(02):214-216.
WU J C, CAI H H. New technique for manufacturing high impedance backing composites[J]. Technical Acoustics, 2008(02):214-216.
[7].Polk E M. Impedance matching circuit for piezoelectric transducers.[J]. massachusetts institute of technology, 2006.
[8].El-Dahshan A, Ahmed H N, El- Tager A. An interactive approach to the design of adaptive impedance matching circuits: Electrical & Computer Engineering, 2011[C].
[9].苟阳, 付欣. 随钻声波发射换能器宽频阻抗匹配设计及实验[J]. 仪器仪表学报, 2022,43(03):186-193.
GOU Y, FU X. Broadband impedance matching design and experiment for acoustic while drilling transducer[J]. Chinese Journal of Scientific Instrument, 2022,43(03):186-193.
[10].Rathod V T. A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers[J]. Electronics, 2019,8(2).
[11].杨剑, 高成强, 刘晓方. 超声激励方式对检测信号的影响[J]. 无损检测, 2010,32(01):36-38.

YANG J,GAO C Q,LIU X F.Affect of Different Simulation Mode on Ultrasonic Testing Signal. [J]. Nondestructive Testing , 2010,32(01):36-38.
[12].徐广春. 超声显微检测技术[M]. 科学出版社: 202104.
XU G C. Ultrasonic microdetection technology [M]. Science Press :202104.
[13].王翥, 刘春龙, 罗清华. 超声波传感器特性分析与测试方法的研究[J]. 郑州大学学报(工学版), 2020,41(02):13-18.
WANG Z, LIU C L, LUO Q H. Research on Ultrasonic Sensors Characteristics and Testing Method[J]. Journal of Zhengzhou University (Engineering Science), 2020,41(02):13-18.
[14].徐丹君. 基于柔性超声传感器的管道腐蚀监测研究[D]. 南京航空航天大学.
The Research of Corrosion Monitoring onPipe based on Flexible Ultrasound Sensor [D]. Nanjing University of Aeronautics and Astronautics.

更新日期/Last Update: 2024-10-10