[1]郜新军,魏文宇,李珊珊,等.洛阳盾构隧道地表沉降Peck公式参数修正[J].郑州大学学报(工学版),2025,46(01):75-81.[doi:10.13705/j.issn.1671-6833.2025.01.010]
 GAO Xinjun,WEI Wenyu,LI Shanshan,et al.Parameters Modification of Peck Formula for Surface Settlement of Shield Tunnelling in Luoyang[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):75-81.[doi:10.13705/j.issn.1671-6833.2025.01.010]
点击复制

洛阳盾构隧道地表沉降Peck公式参数修正()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
75-81
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Parameters Modification of Peck Formula for Surface Settlement of Shield Tunnelling in Luoyang
文章编号:
1671-6833(2025)01-0075-07
作者:
郜新军 魏文宇 李珊珊 苏庆辉
郑州大学 土木工程学院,河南 郑州 450001
Author(s):
GAO Xinjun WEI Wenyu LI Shanshan SU Qinghui
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
隧道盾构 粉质黏土与砂卵石复合地层 Peck公式 线性拟合 地表沉降 修正系数
Keywords:
unnel shield silty clay and sand gravel composite formation Peck formula linear fitting surface settlement correction factor
分类号:
U455
DOI:
10.13705/j.issn.1671-6833.2025.01.010
文献标志码:
A
摘要:
为准确预测洛阳粉质黏土与砂卵石复合地层中的盾构隧道地表沉降量,采用线性回归拟合方法,对洛阳地铁某区间隧道盾构掘进时的地表沉降监测数据进行拟合,引入地表最大沉降修正系数α和沉降槽宽度修正系数β对单线Peck公式进行修正。结果表明:针对单线隧道,采用线性回归方法拟合隧道横断面地表沉降得到的曲线与实际监测数据吻合度高,当修正系数α为0.4~0.9、β为0.5~0.7时得到的修正Peck公式精度最高;针对双线隧道,该地层下的地表沉降基本呈双峰“W”形,双线隧道的土体损失率η和沉降槽宽度系数K的分布区间分别为0.2%~0.8%和0.2~0.5,平均值分别为0.45%和0.37,且先行线的土体损失率均值、沉降槽宽度系数均值分别为后行线的1.4倍、1.3倍。研究成果可为洛阳典型粉质黏土与砂卵石复合地层中盾构隧道后续施工提供数据支撑。
Abstract:
In order to accurately predict the surface settlement of the shield tunnel in the silty clay and sand gravel composite formation in Luoyang, a linear regression fitting method was proposed. To fit a certain section of Luoyang subway by the monitoring data of surface settlement during shield tunneling, maximum surface settlement correction factor α and settlement tank width correction factor β were brought out modifying the single-line Peck formula. The results indicated that for single-line tunnels, the linear regression method used to fit the surface settlement curve of the tunnel cross-section was in highly consistent with the actual monitoring data. When the correction factor α within the range of 0.4 to 0.9, and β within the range of 0.5 to 0.7, the corrected Peck formula obtained the highest accuracy. For double-line tunnels, the surface settlement under the formation was basically in a bimodal "W" shape. Double-line tunnel’s soil loss rate η and the distribution range of the width coefficient of the settlement tank K was 0.2% to 0.8% and 0.2 to 0.5, respectively and the mean values were 0.45% and 0.37, respectively. The average soil loss rate of the leading line and the average width coefficient of settlement tank was 1.4 times and 1.3 times of the rear line, respectively. The research results provided data support for the subsequent construction of the shield tunnel in the typical silty clay and sand gravel composite formation in Luoyang.

参考文献/References:

[1]BOBYLEV N. Mainstreaming sustainable development into a city′s master plan: a case of urban underground space use[J]. Land Use Policy, 2009, 26(4): 1128-1137. 

[2]LI X G, CHEN X S. Using grouting of shield tunneling to reduce settlements of overlying tunnels: case study in Shenzhen metro construction[J]. Journal of Construction Engineering and Management, 2012, 138 (4): 574-584. 
[3]QIAN Q H, LIN P. Safety risk management of underground engineering in China: progress, challenges and strategies[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(4): 423-442. 
[4]任松, 姜德义, 杨春和. 基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J]. 郑州大学学报(工学版), 2006, 27(3): 46-49. 
REN S, JIANG D Y, YANG C H. Predicting the earth surface subsidence caused by excavating shallow tunnel with the genetic neural network[J]. Journal of Zhengzhou University (Engineering Science), 2006, 27(3): 46-49. 
[5]ATTEWELL P B, WOODMAN J P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil[J]. Ground Engineering, 1982, 15 (8): 13-36. 
[6]侯学渊, 廖少明. 盾构隧道沉降预估[J]. 地下工程与隧道, 1993(4): 24-32. 
HOU X Y, LIAO S M. Settlement prediction of shield tunnel[J]. Underground Engineering and Tunnels, 1993 (4): 24-32. 
[7]刘建航, 侯学渊. 盾构法隧道[M]. 北京: 中国铁道出版社, 1991. 
LIU J H, HOU X Y. Shield tunnel[M]. Beijing: China Railway Publishing House, 1991. 
[8]吴锋波, 金淮, 杨歧焱, 等. 北京地铁隧道地表横向沉降槽参数分析[J]. 隧道建设(中英文), 2020, 40 (5): 660-671. 
WU F B, JIN H, YANG Q Y, et al. Analysis of ground transverse settlement groove parameters of Beijing metro tunnel[J]. Tunnel Construction, 2020, 40 (5): 660-671. 
[9]张建全, 张克利, 姚爱敏, 等. 基于实测数据的隧道地表沉降Peck经验参数研究[J]. 铁道工程学报, 2023, 40(3): 89-95. 
ZHANG J Q, ZHANG K L, YAO A M, et al. Peck empirical parameters of tunnel surface settlement based on measured data[J]. Journal of Railway Engineering Society, 2023, 40(3): 89-95. 
[10]徐征杰. 基于福州粘性土地层隧道工程的Peck公式修正[J]. 建筑技术, 2023, 54(4): 477-480. 
XU Z J. Modification of Peck formula for tunnel construction in cohesive soil layer of Fuzhou[J]. Architecture Technology, 2023, 54(4): 477-480. 
[11]林宝刚, 李飞, 李磊, 等. 南昌地铁盾构施工地表沉降的Peck公式修正[J]. 低温建筑技术, 2022, 44 (12): 92-97. 
LIN B G, LI F, LI L, et al. Application of modified Peck formula in shield construction of Nanchang metro [J]. Low Temperature Architecture Technology, 2022, 44(12): 92-97. 
[12]尹光明, 傅鹤林, 侯伟治, 等. Peck公式参数的几种取值方法研究[J]. 铁道科学与工程学报, 2022, 19 (7): 2015-2022. 
YIN G M, FU H L, HOU W Z, et al. Introduction of several methods of value of Peck formula parameters[J]. Journal of Railway Science and Engineering, 2022, 19 (7): 2015-2022. 
[13]吴华君, 魏纲. 近距离双线平行盾构施工引起的土体沉降计算[J]. 现代隧道技术, 2014, 51(2): 6369, 75. 
WU H J, WEI G. The calculation of soil settlement induced by construction of twin parallel shield tunnels with a small-interval[J]. Modern Tunnelling Technology, 2014, 51(2): 63-69, 75. 
[14]张运强, 曹文贵, 周苏华, 等. 基于Peck公式的盾构隧道施工引起的地层三维沉降预测[J]. 铁道科学与工程学报, 2021, 18(1): 153-161. 
ZHANG Y Q, CAO W G, ZHOU S H, et al. Prediction of three-dimensional subface and subsurface settlement caused by shield tunnelling based on Peck formula[J]. Journal of Railway Science and Engineering, 2021, 18 (1): 153-161. 
[15]魏纲, 庞思远. 基于有限元模拟的双线平行盾构隧道近距离界定[J]. 市政技术, 2014, 32(1): 76-80. 
WEI G, PANG S Y. The definition of close range between parallel shield tunnels based on numerical simulation[J]. Municipal Engineering Technology, 2014, 32 (1): 76-80. 
[16]马可栓. 盾构施工引起地基移动与近邻建筑保护研究[D]. 武汉: 华中科技大学, 2008. 
MA K S. Research on the ground settlement caused by the shield construction and the protection of the adjacent buildings[D].Wuhan: Huazhong University of Science and Technology, 2008. 
[17] O′REILLY M P, NEW B M. Settlement above tunnels in the United Kingdom—their magnitude and prediction[J] International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20 (1): 173-181. 
[18]韩煊, 李宁, STANDING J R. Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007, 28(1): 23-28, 35. 
HAN X, LI N, STANDING J R. An adaptability study of Gaussian equation applied to predicting ground settlements induced by tunneling in China[J]. Rock and Soil Mechanics, 2007, 28(1): 23-28, 35.

更新日期/Last Update: 2024-12-31