[1]SEGOVIA RAMÍREZ I, GARCÍA MÁRQUEZ F P, PAPAELIAS M. Review on additive manufacturing and nondestructive testing[J]. Journal of Manufacturing Systems, 2023, 66: 260-286. [2]李阳, 彭笑永, 李大磊, 等. 激光超声无损测量40Cr钢渗氮层深度的实验研究[J]. 郑州大学学报(工学版), 2020, 41(6): 7-12.
LI Y, PENG X Y, LI D L, et al. Experimental investigation on non-destructive measuring of the nitriding thickness of 40Cr steel by laser ultrasonic[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (6): 7-12.
[3]弓鹏飞, 张彦杰, 王法雨, 等. 棒材表面缺陷的激光超声无损检测方法研究[J]. 激光杂志, 2022, 43 (9): 44-49.
GONG P F, ZHANG Y J, WANG F Y, et al. Research on laser ultrasonic nondestructive testing method for surface defects of bar[J]. Laser Journal, 2022, 43(9): 44-49.
[4]杨连杰, 李阳, 孙俊杰, 等. 激光超声表面波在表面缺陷上的反射与透射[J]. 激光与光电子学进展, 2019, 56(4): 146-151.
YANG L J, LI Y, SUN J J, et al. Reflection and transmission of laser ultrasonic waves on surface defects[J]. Laser & Optoelectronics Progress, 2019, 56(4): 146-151.
[5]黄燕杰, 尚建华, 任立红, 等. 用于铝板缺陷无损检测的激光超声有限元模拟研究[J]. 应用光学, 2019, 40(1): 150-156.
HUANG Y J, SHANG J H, REN L H, et al. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156.
[6]LIU S Y, JIA K N, WAN H P, et al. Inspection of the internal defects with different size in Ni and Ti additive manufactured components using laser ultrasonic technology [J]. Optics & Laser Technology, 2022, 146: 107543.
[7]ZENG W, CAI M M, WANG P, et al. Application of laser ultrasonic technique for detecting weld defect based on FDST method[J]. Optik, 2020, 221: 165366.
[8]姜瀚彬, 高炜欣, 石萌萌. 基于卷积神经网络的激光超声缺陷检测研究[J]. 激光杂志, 2022, 43(7): 5964.
JIANG H B, GAO W X, SHI M M. Research on laser ultrasonic defect detection based on convolutional neural network[J]. Laser Journal, 2022, 43(7): 59-64.
[9]LIU Z X, HU Z L, WANG L X, et al. Effective detection of metal surface defects based on double-line laser ultrasonic with convolutional neural networks[J]. Modern Physics Letters B, 2021, 35(15): 2150263.
[10] GUO S F, FENG H W, FENG W, et al. Automatic quantification of subsurface defects by analyzing laser ultrasonic signals using convolutional neural networks and wavelet transform[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(10): 3216-3225.
[11]魏博文, 高炜欣, 刘梦溪. 激光超声结合CNN的铸件缺陷检测方法[J]. 激光与红外, 2022, 52(9): 13271334.
WEI B W, GAO W X, LIU M X. Casting defect detection method combined with laser ultrasound and convolutional neural network[J]. Laser & Infrared, 2022, 52 (9): 1327-1334.
[12] ZAREI A, PILLA S. An improved theory of thermoelasticity for ultrafast heating of materials using short and ultrashort laser pulses[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124510.
[13] JAYA RAO V V S, KANNAN E, PRAKASH R V, et al. Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351[J]. Journal of Applied Physics, 2008, 104(12):123508.
[14] SOLODOV I, BAI J X, BUSSE G. Resonant ultrasound spectroscopy of defects: case study of flat-bottomed holes [J]. Journal of Applied Physics, 2013, 113(22): 223512.
[15] HU H Z, LIU J X, ZHANG X P, et al. An effective and adaptable K-means algorithm for big data cluster analysis [J]. Pattern Recognition, 2023, 139: 109404.
[16] FAIRLEY N, BARGIELA P, HUANG W M, et al. Principal component analysis (PCA) unravels spectral components present in XPS spectra of complex oxide films on iron foil[J]. Applied Surface Science Advances, 2023, 17: 100447.
[17] MARUKATAT S. Tutorial on PCA and approximate PCA and approximate kernel PCA[J]. Artificial Intelligence Review, 2023, 56(6): 5445-5477.
[18]吴志强,张胜,包晓玲,等.针对WSN异常数据检测改进的孤立森林方法[J].小型微型计算机系统, 2021, 42(1):127-131.
WU Z Q, ZHANG S, BAO X L, et al. Improved isolation forest method for WSN anomaly data detection[J]. Journal of Chinese Computer Systems, 2021, 42(1): 127-131.
[19]WANG H F, JIANG W, DENG X Y, et al. A new method for fault detection of aero-engine based on isolation forest[J]. Measurement, 2021, 185: 110064.
[20] JEONG W, TSINGAS C, ALMUBARAK M S. Local outlier factor as part of a workflow for detecting and attenuating blending noise in simultaneously acquired data[J]. Geophysical Prospecting, 2020, 68(5): 1523-1539.
[21] CHIU A L M, FU A W C. Enhancements on local outlier detection[C]∥The Seventh International Database Engineering and Applications Symposium. Piscataway: IEEE, 2003: 298-307.