[1]靳贵平,杨思思,涂治红,等.高聚焦性双梯形双层经颅磁线圈的设计[J].郑州大学学报(工学版),2025,46(01):119-125.[doi:10.13705/j.issn.1671-6833.2025.01.005]
 JIN Guiping,YANG Sisi,TU Zhihong,et al.Design of Double-trapezoidal and Double-layer Transcranial Magnetic Coil with High Focality[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):119-125.[doi:10.13705/j.issn.1671-6833.2025.01.005]
点击复制

高聚焦性双梯形双层经颅磁线圈的设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
119-125
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Design of Double-trapezoidal and Double-layer Transcranial Magnetic Coil with High Focality
文章编号:
1671-6833(2025)01-0119-07
作者:
靳贵平 杨思思 涂治红 徐向民 邢晓芬
华南理工大学 电子与信息学院,广东 广州 510641
Author(s):
JIN Guiping YANG Sisi TU Zhihong XU Xiangmin XING Xiaofen
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
关键词:
电磁感应 聚焦度 经颅磁刺激 Sim4Life 真实脑模型
Keywords:
electromagnetic induction focality transcranial magnetic stimulation Sim4Life brain model
分类号:
R318Q64TM55
DOI:
10.13705/j.issn.1671-6833.2025.01.005
文献标志码:
A
摘要:
基于聚焦性能对经颅磁线圈的影响,针对聚焦型线圈商用不足的问题,设计一种具有高聚焦性的单通道双梯形双层线圈。首先使用球头模型分析不同尺寸、相同结构的线圈性能,得到较优的线圈尺寸;为进一步提升聚焦度,再以中尺寸线圈为研究目标,探讨五种不同结构的双层线圈与两种商用8字形线圈的性能差异,得到最优线圈的结构;最后使用50组存在个体差异性的真实脑模型进行仿真验证,分析球头模型结果的可靠性。仿真结果表明:使用球头模型时,优化后的新型线圈对比70 mm figure-8 coil的聚焦度提升了69.48%,刺激深度减少了27.18%;对比25 mm figure-8 coil的聚焦度提升了44.78%,刺激深度减少了8.5%;使用50组真实脑模型时,优化后的新型线圈对比70 mm figure-8 coil的聚焦度提升了62.07%,刺激深度减少了25.71%;对比25 mm figure-8 coil的聚焦度提升了39.49%,刺激深度减少了9.5%。两种模型仿真数据结果趋于一致,证实了仿真可靠性的同时也证明了新型线圈具有更强的刺激强度和聚焦度,能大大提升TMS治疗的安全性,减少不适感,同时单通道设计易于实现,具有较高的性能优势。
Abstract:
Based on the influence of focality on transcranial magnetic coil, a single-channel double-trapezoidal and double-layer coil with high focality was designed to address the insufficient commercial use. Firstly, the ball-head model was used to analyze the coils with same structure but different sizes, and the better coil size was obtained. In order to further improve the focality, the differences of medium-size coil between five different structures of doublelayer coils and two commercial figure-8 coils were analyzed, and the optimal coil structure was obtained. Finally, 50 groups of real brain models with individual differences were used for simulation verification. The simulation results indicated that when using the ball-head model, the optimized coil improved the focality by 69.48% and reduced the depth by 27.18% compared with the 70 mm figure-8 coil, the focality was improved by 44.78%, and the depth was reduced by 8.5% compared with 25 mm figure-8 coil. When using 50 groups of real brain models, the focality of the optimized coil was improved by 62.07% and the depth was reduced by 25.71% compared with the 70 mm figure-8 coil, the focality was improved by 39.49%, and the depth was reduced by 9.5% compared with 25 mm figure-8 coil. Experiment results of two models tended to be consistent, which confirmed the reliability of the simulation and also proved that the optimized coil had stronger stimulation intensity and focality, which could greatly improve the safety of TMS treatment and reduce discomfort. At the same time, the single-channel design was easy to implement and had high performance.

参考文献/References:

[1]ZHANG Z, AI W J, DENG B, et al. Improved figure-ofeight coil for transcranial magnetic stimulation using magnetic resonant coupling[J]. IEEE Transactions on Magnetics, 2017, 53(11): 9100605. 

[2]EIBL T, SCHREY M, LIEBERT A, et al. Influence of clinical and tumor-specific factors on the resting motor threshold in navigated transcranial magnetic stimulation [J]. Neurophysiologie Clinique, 2023, 53(6): 102920. 
[3]REN C, TARJAN P P, POPOVIC’ D B. A novel electric design for electromagnetic stimulation: the Slinky coil [J]. IEEE Transactions on Bio-Medical Engineering, 1995, 42(9): 918-925. 
[4]PANIZZA M, NILSSON J, ROTH B J, et al. Relevance of stimulus duration for activation of motor and sensory fibers: implications for the study of H-reflexes and magnetic stimulation[J]. Electroencephalography and Clinical Neurophysiology, 1992, 85(1): 22-29. 
[5]WEI X L, LI Y, LU M L, et al. Comprehensive survey on improved focality and penetration depth of transcranial magnetic stimulation employing multi-coil arrays[J]. International Journal of Environmental Research and Public Health, 2017, 14(11): 1388. 
[6]杨龙成, 陆继庆. 经颅磁刺激参数与结构要件的影响分析[J]. 生物信息学, 2014, 12(1): 53-59. 
YANG L C, LU J Q. Analysis of transcranial magnetic stimulation parameters and the impact of structural elements[J]. Chinese Journal of Bioinformatics, 2014, 12 (1): 53-59. 
[7]SPAMPINATO D, IBÁÑEZ J, SPANOUDAKIS M, et al. Cerebellar transcranial magnetic stimulation: the role of coil type from distinct manufacturers[J]. Brain Stimulation, 2020, 13(1): 153-156. 
[8]牛瑞奇, 张丞, 吴昌哲, 等. 组织电导率对经颅磁刺激头模型内电场计算的影响[J]. 生物医学工程学杂志, 2023, 40(3): 401-408. 
NIU R Q, ZHANG C, WU C Z, et al. The influence of tissue conductivity on the calculation of electric field in the transcranial magnetic stimulation head model[J]. Journal of Biomedical Engineering, 2023, 40(3): 401-408. 
[9]GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues: Ⅲ. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293. 
[10]方晓. 经颅磁刺激系统关键技术研究[D]. 武汉: 华中科技大学, 2020. 
FANG X. Research on the key technologies of transcranial magnetic stimulation system[D].Wuhan: Huazhong University of Science and Technology, 2020. 
[11] ZHENG W, YU H L, DING W G, et al. Changes in brain functional networks of insomniacs induced by magnetic stimulation at acupoints[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 0500104. 
[12] MURPHY D, GOMEZ L, HAMDAN R, et al. Experimental demonstration of transcranial magnetic stimulation coils with optimized focality[J]. Brain Stimulation, 2023, 16(1): 223. 
[13] YOUNG I M, OSIPOWICZ K, MACKENZIE A, et al. Comparison of consistency between image guided and craniometric transcranial magnetic stimulation coil placement[J]. Brain Stimulation, 2022, 15(6): 1465-1466. 
[14] CORLIER J, WILSON A, HUNTER A M, et al. Changes in functional connectivity predict outcome of repetitive transcranial magnetic stimulation treatment of major depressive disorder[J]. Cerebral Cortex, 2019, 29(12): 4958-4967.
[15] ZANGEN A, ROTH Y, VOLLER B, et al. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil[J]. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 2005, 116(4): 775-779. 
[16] GOMEZ L J, GOETZ S M, PETERCHEV A V. Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy[J]. Journal of Neural Engineering, 2018, 15(4): 046033. 
[17] BOONZAIER J, PETROV P I, OTTE W M, et al. Design and evaluation of a rodent-specific transcranial magnetic stimulation coil: an in silico and in vivo validation study[J]. Neuromodulation: Journal of the International Neuromodulation Society, 2020, 23(3): 324-334. 
[18]WANG B S, ZHANG J S, LI Z X, et al. Optimized monophasic pulses with equivalent electric field for rapidrate transcranial magnetic stimulation[J]. Journal of Neural Engineering, 2023, 20(3): 036027. 
[19]熊慧, 王玉领, 付浩, 等. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686. 
XIONG H, WANG Y L, FU H, et al. An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 679-686. 
[20]段以晗. 基于经颅磁刺激技术的不同语言关键脑功能区研究[D]. 深圳: 深圳大学, 2018. 
DUAN Y H. Research on key language functional areas of different languages based on transcranial magnetic stimulation[D].Shenzhen: Shenzhen University, 2018. 
[21] LIU Y H, LIU S Y, SEFATI S, et al. Inside-out tracking and projection mapping for robot-assisted transcranial magnetic stimulation[C]∥Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR). Washington DC: SPIE, 2022: 57-70.

更新日期/Last Update: 2024-12-31