[1]吴文亮,李陈月,代生林.基于声学参数的 OGFC 沥青混合料吸声性能优化[J].郑州大学学报(工学版),2024,45(06):18-24.[doi:10.13705/j.issn.1671-6833.2024.06.008]
 WU Wenliang,LI Chenyue,DAI Shenglin.Optimization of Sound Absorption Performance of OGFC Asphalt Mixture Based onAcoustic Parameters[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):18-24.[doi:10.13705/j.issn.1671-6833.2024.06.008]
点击复制

基于声学参数的 OGFC 沥青混合料吸声性能优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年06期
页码:
18-24
栏目:
出版日期:
2024-09-25

文章信息/Info

Title:
Optimization of Sound Absorption Performance of OGFC Asphalt Mixture Based onAcoustic Parameters
文章编号:
1671-6833(2024)06-0018-07
作者:
吴文亮 李陈月 代生林
华南理工大学 土木与交通学院,广东 广州 510641
Author(s):
WU Wenliang LI Chenyue DAI Shenglin
School of Civil Engineering and Transportation,South China University of Technology, Guangzhou 510641,China
关键词:
OGFC 沥青混合料 声学参数 遗传算法 驻波管模型 吸声性能优化
Keywords:
OGFC asphalt mixture acoustic parameters genetic algorithm standing wave tube model optimization of sound absorption performanc
分类号:
U414
DOI:
10.13705/j.issn.1671-6833.2024.06.008
文献标志码:
A
摘要:
多孔材料吸声系数的唯象模型考虑了声波在空隙结构中传播产生的能量耗散,构建基于声学参数的模型,可对吸声系数进行较好的预测。 为了准确获取 OGFC 沥青混合料的 5 个声学参数( 孔隙率、流阻率、曲折因子、黏性 / 热效特征长度)以构建声学模型,首先,通过实测与反演结合的方法制备了不同孔隙率、不同级配类型的 OGFC 沥青混合料,使用驻波管测试了吸声系数;其次,开发了适用于混合料的流阻率测量设备,利用实测的空隙率、吸声系数和流阻率,基于遗传算法编写反演程序对 OGFC 的曲折因子、黏性 / 热效特征长度进行反演;再次,建立驻波管的有限元模型验证了声学参数的正确性,分析了声学参数单因素对吸声性能的影响;最后,基于声学参数对吸声性能进行了优化。 结果表明:OGFC 的空隙率越高和公称最大粒径越大,平均吸声系数和峰值吸声系数均越大;所构建的模型能够较好体现混合料的吸声特性,峰值吸声系数及出现的频率与实测值吻合;空隙率、黏性特征长度和热效特征长度增大,以及曲折因子减小,均有利于提高吸声性能,根据声学参数对混合料吸声性能的优化结果,最佳的吸声性能应将空隙率控制在 22%左右。
Abstract:
In the phenomenological model, the sound absorption coefficient of porous materials was used to explaintakes into account the energy dissipation generated by the propagation of sound waves in the void structure. A modelbased on acoustic parameters was constructed to predict the sound absorption coefficient. In order to accurately obtain the five acoustic parameters ( porosity, flow resistance rate, tortuosity factor, viscous/ thermal characteristiclength) of OGFC asphalt mixture to construct the acoustic model, the OGFC asphalt mixture with different porosityand different gradation types was prepared by the combination of measurement and inversion, and the sound absorption coefficient was tested by standing wave tube. The flow resistance measurement equipment suitable for mixturewas developed. Based on the measured porosity, sound absorption coefficient and flow resistance, the inversionprogram was written based on genetic algorithm to invert the tortuosity factor and viscous/ thermal effect characteristic length of OGFC. Secondly, the finite element model of standing wave tube was established to verify the correctness of acoustic parameters. The influence of single factor of acoustic parameters on sound absorption performancewas analyzed. Finally, the sound absorption performance was optimized based on acoustic parameters. The resultsshowed that the higher the porosity of OGFC and the larger the nominal maximum particle size, the larger the average sound absorption coefficient and the peak sound absorption coefficient. The model constructed could better reflect the sound absorption characteristics of the mixture, and the peak sound absorption coefficient and the frequency of occurrence were consistent with the measured values. The increase of porosity, viscous characteristic lengthand thermal effect characteristic length, and the decrease of tortuosity factor would be beneficial to improve thesound absorption performance. The optimization results of the sound absorption performance of the mixture based onthe acoustic parameters showed that the porosity should be controlled at about 22% for the best sound absorptionperformance.

参考文献/References:

[1] VAITKUS A, ANDRIEJAUSKAS T, VOROBJOVAS V,et al. Asphalt wearing course optimization for road trafficnoise reduction[ J] . Construction and Building Materials,2017, 152: 345-356.

[2] 李晨阳, 刘鹏, 陈宏, 等. 基于驾驶室舱内声学特性的动力 吸 振 器 设 计 研 究 [ J] . 郑 州 大 学 学 报 ( 工 学版) , 2021, 42(4) : 47-52.
LI C Y, LIU P, CHEN H, et al. Design and research ofdynamic vibration absorber based on acoustic characteristics of interior sound field in a cab[ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42 ( 4) :47-52.
[3] 王涛. 低噪声沥青路面降噪原理及影响因素分析[ J] .山东交通科技, 2016(4) : 113-115, 117.
WANG T. Analysis of noise reduction principles and influence factors of low noise asphalt pavement[ J] . Shangdong Jiaotong Keji, 2016(4) : 113-115, 117.
[4] 何虹霖, 邹晓翎, 叶向前, 等. 低噪声沥青路面降噪机理及研究进展[J]. 中外公路, 2022, 42(1): 55-61.
HE H L, ZOU X L, YE X Q, et al. Noise reductionmechanism and research progress of low-noise asphaltpavement [ J ] . Journal of China & Foreign Highway,2022, 42(1) : 55-61.
[5] LICITRA G, MORO A, TETI L C, et al. Modelling of acoustic ageing of rubberized pavements [ J ] . AppliedAcoustics, 2019, 146: 237-245.
[6] 李金凤, 何兆益, 孔林. 多孔沥青混合料的声学性能评价[ J] . 西 南 交 通 大 学 学 报, 2022, 57 ( 1) : 207 -214.
LI J F, HE Z Y, KONG L. Evaluation of acoustic performance of porous asphalt concrete [ J ] . Journal ofSouthwest Jiaotong University, 2022, 57(1) : 207-214.
[7] CHU L, FWA T F. Functional sustainability of single -and double-layer porous asphalt pavements[ J] . Construction and Building Materials, 2019, 197: 436-443.
[8] YANG Y, CHEN Z F. A model for calculating the airflow resistivity of glass fiber felt[ J] . Applied Acoustics,2015, 91: 6-11.
[9] LE L H, ZHANG C, TA D A, et al. Measurement of tortuosity in aluminum foams using airborne ultrasound[ J] .Ultrasonics, 2010, 50(1) : 1-5.
[10] ROCHAT J, DONAVAN P, SEYBERT A, et al. Pavement sound absorption measurements in the US [ EB /OL] . (2012-08-19) [ 2024- 01- 16] . https:∥www. docin. com / p-1483899964. html.
[11] SACHAKAMOL P, DAI L M. Parametric influence onthe sound absorption coefficient of porous asphalt [ C] ∥Proceedings of ASME 2009 International Mechanical Engineering Congress and Exposition. New York: ASME,2010: 19-26.
[12] LUONG J, BUENO M, VÁZQUEZ V F, et al. Ultrathinporous pavement made with high viscosity asphalt rubberbinder: a better acoustic absorption? [ J ] . AppliedAcoustics, 2014, 79: 117-123.
[13] 于长帅, 罗忠, 骆海涛, 等. 多孔吸声材料声学模型及其特 征 参 数 测 试 方 法 研 究 进 展 [ J ] . 材 料 导 报,2022, 36(4) : 226-236.
YU C S, LUO Z, LUO H T, et al. Research progress onacoustic model of porous sound absorbing materials andmeasurement method of its characteristic parameters[ J] .Materials Reports, 2022, 36(4) : 226-236.
[14] 王营, 赵武, 黄丹. 多孔材料声学模型及其应用[ J] .材料导报, 2015, 29(5) : 145-149.
WANG Y, ZHAO W, HUANG D. The acoustic modelsof porous materials and their applications [ J] . MaterialsReview, 2015, 29(5) : 145-149.
[15] ALLARD J F, CHAMPOUX Y. New empirical equationsfor sound propagation in rigid frame fibrous materials[ J] .The Journal of the Acoustical Society of America, 1992,91(6) : 3346-3353.
[16] 王萍. 稳态流阻率的声学测量方法研究[ D] . 南京:南京大学, 2013.
WANG P. A study on the acoustic measurement methodsof static flow resistivity[D] . Nanjing: Nanjing University,2013.
[17] 张茂清, 李东洋, 胡博, 等. 基于维度扰动的快速非支配排序遗传算法Ⅱ[ J] . 郑州大学学报( 工学版) ,2020, 41(1) : 38-43.
ZHANG M Q, LI D Y, HU B, et al. Non-dominated sorting genetic algorithm Ⅱ based on dimensionality perturbation[ J] . Journal of Zhengzhou University (EngineeringScience) , 2020, 41(1) : 38-43.

更新日期/Last Update: 2024-09-29