[1]成连华,杨曜妍,李树刚,等.高层建筑施工安全关键风险因子及耦合效应分析[J].郑州大学学报(工学版),2024,45(06):92-99.[doi:10.13705/j.issn.1671-6833.2024.06.006]
 CHENG Lianhua,YANG Yaoyan,LI Shugang,et al.Analysis of Key Risk Factors and Coupling Effects of Construction Safety ofHigh-rise Buildings[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):92-99.[doi:10.13705/j.issn.1671-6833.2024.06.006]
点击复制

高层建筑施工安全关键风险因子及耦合效应分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年06期
页码:
92-99
栏目:
出版日期:
2024-09-25

文章信息/Info

Title:
Analysis of Key Risk Factors and Coupling Effects of Construction Safety ofHigh-rise Buildings
文章编号:
1671-6833(2024)06-0092-08
作者:
成连华 杨曜妍 李树刚 魏 凯 曹东强
西安科技大学 安全科学与工程学院,陕西 西安 710054
Author(s):
CHENG Lianhua YANG Yaoyan LI Shugang WEI Kai CAO Dongqiang
College of Safety Science and Engineering, Xi’ an University of Science and Technology, Xi’ an 710054, China
关键词:
复杂网络 高层建筑 耦合关系 N-K 模型 风险因子
Keywords:
complex network high-rise buildings coupling relationship N-K model risk factors
分类号:
X913. 4TU714
DOI:
10.13705/j.issn.1671-6833.2024.06.006
文献标志码:
A
摘要:
为探究高层建筑施工安全的关键性风险因子及风险因素的耦合效应,将复杂网络模型和 N-K 模型相结合,根据事故案例调查报告的完整性选取了 2015—2022 年高层建筑施工事故案例 158 起,根据扎根理论对其中84 起事故案例原因进行信息编码,经统计分析识别出人、机、料、管、环 5 类风险因素和 23 个风险因子。 根据 N-K模型计算风险因素各类耦合形式的风险耦合值,运用 Ucinet 软件得出复杂网络模型中各风险因子的度值分布。 通过 Netdraw 绘制高层建筑施工风险耦合网络模型图,并对 23 个风险因子的节点进行潜在风险链分析,将潜在风险链耦合形式和 N-K 模型耦合度值相结合对标准化出度进行修正。 用剩余 74 起事故案例对所得结果进行验证,验证结果与先前 84 起事故案例分析结果大致相符。 结果表明:参与耦合的风险因素数量越多风险耦合值越大,其中,有设备因素参与的耦合形式耦合值最大。 现场管理不到位、安全教育培训不到位、安全管理制度不完备、未正确穿戴防护用品和隐患排查治理不到位是需要重点防控的关键性风险因子。
Abstract:
In order to explore the key risk factors of high-rise building construction safety and the coupling effects ofrisk elements, the complex network model and the N-K model were combined, 158 high-rise building constructionaccident cases from 2015 to 2022 were selected according to the completeness of the accident case investigation report, and the causes of 84 of them were coded according to the grounded theory, and 5 risk elements including human, machine, material, pipe and environment and 23 risk factors were identified through statistical analysis. Thecoupling risk values of various coupling forms of risk elements were calculated according to the N-K model, and thedegree value distribution of each risk factor in the complex network model was obtained by using Ucinet software.The risk coupling network model of high-rise building construction was drawn by Netdraw, and the potential riskchain of nodes of 23 risk factors was analyzed, and the coupling form of potential risk chain and the coupling degreevalue of N-K model were combined to modify the standardized output. The remaining 74 accident cases were used toverify the results, and the verification results were roughly consistent with the previous 84 accident cases. The results showed that the greater the number of risk elements involved in coupling, the greater the risk coupling value,and the coupling form involving equipment elements had the largest coupling value. The lack of site management,the lack of safety education and training, the incompleteness of safety management system, inporper wearing of protective equipment, and the lack of investigation and management of hidden danger were the key risk factors thatneed to be focused on prevention and control.

参考文献/References:

[1] 沈阳, 徐磊, 郑冠雨, 等. 考虑风险因素耦合的超高层施工预警方法研究[ J] . 郑州大学学报(工学版) ,2021, 42(4) : 98-104, 110.

SHEN Y, XU L, ZHENG G Y, et al. Research on early-warning method for super high-rise building constructionconsidering coupling effect of risk factors[ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42(4) : 98-104, 110.
[2] ZAINI A A. Exploring the construction safety risk driversand risk prevention [ J] . Journal of Engineering & Applied Sciences , 2018, 12(8) : 1952-1957.
[3] MANZOOR B, OTHMAN I, MANZOOR M. Evaluatingthe critical safety factors causing accidents in high-risebuilding projects [ J ] . Ain Shams Engineering Journal,2021, 12(3) : 2485-2492.
[4] ISMAIL Z, DOOSTDAR S, HARUN Z. Factors influencing the implementation of a safety management system forconstruction sites [ J ] . Safety Science, 2012, 50 ( 3 ) :418-423.
[5] 刘辉, 郑向莞, 张智超, 等. 定量改进 JHA 法的建筑施工高 危作业风 险分析 [ J] . 中 国安全科学学报,2019, 29(4) : 146-151.
LIU H, ZHENG X W, ZHANG Z C, et al. Risk analysisof high-risk operations in construction by a quantitativelyimproved JHA method[ J] . China Safety Science Journal,2019, 29(4) : 146-151.
[6] 张兵, 詹锐, 关贤军, 等. 基于 CBR 的超高层建筑施工安全事故研究[ J] . 土木工程与管理学报, 2019, 36(6) : 92-98.
ZHANG B, ZHAN R, GUAN X J, et al. Research onconstruction safety accidents of super high-rise buildingsbased on CBR[ J] . Journal of Civil Engineering and Management, 2019, 36(6) : 92-98.
[7] 董翔, 谢桥漾, 季晓刚, 等. 超高层装配式建筑施工安全风险 评 价 [ J] . 建 筑 经 济, 2020, 41 ( 增 刊 1) :290-293.
DONG X, XIE Q Y, JI X G, et al. Safety risk assessment of ultra-high-rise assembled building construction[ J] . Construction Economy, 2020, 41( S1) : 290-293.
[8] 谢尊贤, 徐宝, 骆信慧, 等. 基于优化 AHP 与物元可拓模型的高层建筑施工安全风险评价[ J] . 土木工程与管理学报, 2021, 38(2) : 98-104, 118.
XIE Z X, XU B, LUO X H, et al. Evaluation of construction safety risk of high-rise building based on optimized AHP and object-element extension model [ J ] .Journal of Civil Engineering and Management, 2021, 38(2) : 98-104, 118.
[9] 蔡久顺, 张执国, 师鹏. 基于改进风险度模型的高层建筑施工安全风险评价研究[ J] . 数学的实践与认识,2015, 45(23) : 81-87.
CAI J S, ZHANG Z G, SHI P. A research on safety riskevaluation of high-rise building construction based on improved risk degree model [ J ] . Mathematics in Practiceand Theory, 2015, 45(23) : 81-87.
[10] FALTER D, SCHRÖTER K, DUNG N V, et al. Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain[ J] . Journal of Hydrology, 2015, 524: 182-193.
[11] LOZOYA J P, SARDÁ R, JIMÉNEZ J A. A methodological framework for multi-hazard risk assessment in beaches [ J ] . Environmental Science & Policy, 2011, 14(6) : 685-696.
[12] PAN H Z, GOU J, WAN Z H, et al. Research on coupling degree model of safety risk system for tunnel construction in subway shield zone[ J] . Mathematical Problems in Engineering, 2019, 2019: 5783938.
[13] 文艳芳, 陈敬配. 地铁隧道施工坍塌风险耦合机理研究[ J] . 地 下 空 间 与 工 程 学 报, 2021, 17 ( 3) : 943 -952.
WEN Y F, CHEN J P. Research on coupling mechanismof collapse risk in metro tunnel construction[ J] . ChineseJournal of Underground Space and Engineering, 2021, 17(3) : 943-952.
[14] 骆成, 陈霞, 路亚妮, 等. 中国沿海危化品道路运输系统风险耦合分析[ J] . 西安科技大学学报, 2022, 42(5) : 975-984.
LUO C, CHEN X, LU Y N, et al. Risk coupling analysisof hazardous chemicals road transportation system in China′s coastal areas[ J] . Journal of Xi′an University of Science and Technology, 2022, 42(5) : 975-984.
[15] 姚浩, 陈超逸, 宋丹妮. 基于复杂网络的超高层建筑施工安全风险耦合评估方法[ J] . 安全与环境学报,2021, 21(3) : 957-968.
YAO H, CHEN C Y, SONG D N. Coupling safety riskassessment of super high-rise building construction basedon complex network [ J] . Journal of Safety and Environment, 2021, 21(3) : 957-968.
[16] 周红波, 杨奇, 杨振国, 等. 基于复杂网络和 N-K 模型的塔吊安全风险因素分析与控制[ J] . 安全与环境学报, 2020, 20(3) : 816-823.
ZHOU H B, YANG Q, YANG Z G, et al. Analysis ofthe risk involved factors and safety control of the towercrane based on the complex network and N-K model[ J] .Journal of Safety and Environment, 2020, 20( 3) : 816-823.
[17] 潘红伟, 郭德赛, 宋战平, 等. 基于 N-K 模型的隧道施工事故多风险因素耦合分析[ J] . 隧道建设( 中英文) , 2022, 42(9) : 1537-1545.
PAN H W, GUO D S, SONG Z P, et al. Coupling analysis to investigate multiple risk factors for tunnel construction accidents based on N-K model[ J] . Tunnel Construction, 2022, 42(9) : 1537-1545.
[18] 宋绍珍, 刘欢, 高波, 等. 基于 N-K 模型的海上航标效能影 响 因 素 耦 合 分 析 [ J] . 上 海 海 事 大 学 学 报,2023, 44(2) : 77-82.
SONG S Z, LIU H, GAO B, et al. Coupling analysis ofinfluencing factors for efficiency of marine aids to navigation based on N-K model[ J] . Journal of Shanghai Maritime University, 2023, 44(2) : 77-82.
[19] 方俊, 郭佩文, 朱科, 等. 基于 N-K 模型的地铁隧道施工安全风险耦合演化分析[ J] . 中国安全科学学报,2022, 32(6) : 1-9.
FANG J, GUO P W, ZHU K, et al. Coupling evolutionanalysis of subway tunnel construction safety risk based on N-K model[ J] . China Safety Science Journal, 2022, 32(6) : 1-9.
[20] 吴书强, 邵必林, 边根庆, 等. 基于复杂网络的高校火灾灾害链分析及应急管理决策研究 [ J] . 灾害学,2022, 37(2) : 156-161, 166.
WU S Q, SHAO B L, BIAN G Q, et al. Research on firedisaster chain analysis and emergency management decision-making in colleges and universities based on complexnetwork[ J] . Journal of Catastrophology, 2022, 37( 2) :156-161, 166.
[21] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[ J] . 复杂系统与复杂性科学, 2022, 19(3) : 66-73.
ZHANG J, SONG Z G, ZHANG Y. Method of determining high-risk buildings for fire spread in densely builtbuilding areas based on importance of network nodes[ J] .Complex Systems and Complexity Science, 2022, 19(3) :66-73.
[22]孙家庆, 李默涵, 修晓仪. 基于复杂网络理论的水上交通事故致因分析[ J] . 大连海事大学学报, 2023, 49(2) : 80-90, 160.
SUN J Q, LI M H, XIU X Y. Causal analysis of watertraffic accidents based on complex network theory [ J ] .Journal of Dalian Maritime University, 2023, 49 ( 2 ) :80-90, 160.

相似文献/References:

[1]熊俊,王元清,石永久,等.含偏心支撑高层钢结构的抗震性能分析[J].郑州大学学报(工学版),2009,30(03):1.
 XIONG Jun,WANG Yuanqing,SHI Yongjiu,et al.Seismic Performance Analysis of High-rise Steel Structures with Eccentric Support[J].Journal of Zhengzhou University (Engineering Science),2009,30(06):1.
[2]李会知..某高层建筑行人高度风环境试验研究[J].郑州大学学报(工学版),1999,20(04):36.[doi:10.3969/j.issn.1671-6833.1999.04.011]
 LI Huizhi..Experimental study on pedestrian height wind environment of a high-rise building[J].Journal of Zhengzhou University (Engineering Science),1999,20(06):36.[doi:10.3969/j.issn.1671-6833.1999.04.011]

更新日期/Last Update: 2024-09-29