[1]轩 华,耿祝新,李 冰.组合缓冲约束下的多目标混合流水线节能调度[J].郑州大学学报(工学版),2025,46(01):17-25.[doi:10.13705/j.issn.1671-6833.2024.04.009]
 XUAN Hua,GENG Zhuxin,LI Bing.Multi-objective Hybrid Flowline Energy-saving Scheduling with Combined Buffer Constraints[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):17-25.[doi:10.13705/j.issn.1671-6833.2024.04.009]
点击复制

组合缓冲约束下的多目标混合流水线节能调度()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
17-25
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Multi-objective Hybrid Flowline Energy-saving Scheduling with Combined Buffer Constraints
文章编号:
1671-6833(2025)01-0017-09
作者:
轩 华 耿祝新 李 冰
郑州大学 管理学院,河南 郑州 450001
Author(s):
XUAN Hua GENG Zhuxin LI Bing
School of Management, Zhengzhou University, Zhengzhou 450001, China
关键词:
混合流水线 改进多目标模因算法 组合缓冲约束 不相关并行机 多目标优化 节能调度
Keywords:
hybrid flowline improved multi-objective memetic algorithm combined buffer constraints unrelated parallel machine multi-objective optimization energy-saving scheduling
分类号:
TB491
DOI:
10.13705/j.issn.1671-6833.2024.04.009
文献标志码:
A
摘要:
为解决生产阶段间带有无限缓冲和阻塞两种中间缓冲约束的混合流水线节能调度问题,考虑不相关并行机和多时间约束建立数学模型,结合问题特征提出一种改进多目标模因算法以同时最小化最大完工时间和机器总能耗。采用基于不相关机器分配的矩阵编码方案,利用基于Tent混沌映射的混合初始化策略生成初始元胞数组,全局优化算子应用基于参数的自适应遗传策略改进的非支配排序遗传算法,局部增强搜索算子应用一种融合自适应选择邻域搜索和多目标模拟退火的搜索策略以提高算法搜索能力。通过24种不同规模问题的算例实验,验证了所提算法求解该问题的有效性和优越性。实验结果表明:改进多目标模因算法在平均运行时间241.26 s内得到的平均IGD值为47.89,平均SP值为857.25,均低于其他3种对比算法。改进多目标模因算法所求解集具有较好的收敛性、多样性和分布性。
Abstract:
To solve the hybrid flowline energy-saving scheduling problem with two intermediate buffer constraints, infinite buffer and blocking, between production stages, a mathematical model was formulated by considering the uncorrelated parallel machines and multiple time constraints. Taking into account the characteristics of the problem, an improved multi-objective memetic algorithm (IMOMA) was proposed to minimize simultaneously makespan and total energy consumption of the machines. The algorithm adopted a matrix encoding method based on uncorrelated machine assignment. Using a hybrid initialization strategy based on Tent chaotic map to generate the initial cell array, an non-dominated sorting genetic algorithm improved by parameter-based adaptive genetic strategy was applied for the global optimization operator, and a search strategy integrating adaptive selection neighborhood search and multi-objective simulated annealing was designed for the locally enhanced search operator to improve the algorithm′s search capability. The effectiveness and superiority of the proposed algorithm were verified through case experiments with 24 problem scales. The experimental results showed that the average IGD value of 47.89 and the average SP value of 857.25 obtained by IMOMA within the average running time of 241.26 s were lower than the other three comparison algorithms. So the solution set obtained by IMOMA had better convergence, diversity and distributivity.

参考文献/References:

[1]RIAHI V, KHORRAMIZADEH M, HAKIM NEWTON M A, et al. Scatter search for mixed blocking flowshop scheduling[J]. Expert Systems with Applications, 2017, 79: 20-32. 

[2]王君妍, 王薛苑, 轩华. 带批处理机的多阶段柔性流水车间调度优化[J]. 郑州大学学报(工学版), 2017, 38(5): 86-90. 
WANG J Y, WANG X Y, XUAN H. Multi-stage flexible flowshop scheduling with batching machines[J]. Journal of Zhengzhou University (Engineering Science), 2017, 38(5): 86-90. 
[3]QIN H X, HAN Y Y, WANG Y T, et al. Intelligent optimization under blocking constraints: a novel iterated greedy algorithm for the hybrid flow shop group scheduling problem[J]. Knowledge-Based Systems, 2022, 258: 109962. 
[4]MISSAOUI A, BOUJELBENE Y. An effective iterated greedy algorithm for blocking hybrid flow shop problem with due date window[J]. RAIRO-Operations Research, 2021, 55(3): 1603-1616. 
[5]胡蓉, 董钰明, 钱斌. 基于探路者算法的绿色有限缓冲区流水线调度[J]. 系统仿真学报, 2021, 33(6): 1384-1396. 
HU R, DONG Y M, QIAN B. Pathfinder algorithm for green pipeline scheduling with limited buffers[J]. Journal of System Simulation, 2021, 33(6): 1384-1396. 
[6]LIN C C, LIU W Y, CHEN Y H. Considering stockers in reentrant hybrid flow shop scheduling with limited buffer capacity[J]. Computers & Industrial Engineering, 2020, 139: 106154. 
[7]裴小兵, 李依臻. 新型混合改进遗传算法求解零等待流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(3): 815-827. 
PEI X B, LI Y Z. New hybrid improved genetic algorithm for solving no-wait flow shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2021, 27 (3): 815-827. 
[8]AZAIEZ M N, GHARBI A, KACEM I, et al. Two-stage no-wait hybrid flow shop with inter-stage flexibility for operating room scheduling[J]. Computers & Industrial Engineering, 2022, 168: 108040. 
[9]WANG Y M, LI X P, RUIZ R, et al. An iterated greedy heuristic for mixed no-wait flowshop problems[J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1553-1566. 
[10]钟祾充, 李文锋, 贺利军, 等. 集装箱码头混合零空闲柔性流水作业调度优化[J]. 计算机集成制造系统, 2022, 28(11): 3421-3432. 
ZHONG L C, LI W F, HE L J, et al. Optimization of mixed no-idle flexible flow scheduling in container terminal[J]. Computer Integrated Manufacturing Systems, 2022, 28(11): 3421-3432. 
[11]轩华, 付鑫博, 李冰. 基于混合离散人工蜂群算法的混合零等待柔性流水车间优化研究[J]. 工业工程与管理, 2023, 28(1): 170-180. 
XUAN H, FU X B, LI B. Research on optimization of mixed zero-wait flexible flowshop based on hybrid discrete artificial bee colony algorithm[J]. Industrial Engineering and Management, 2023, 28(1): 170-180. 
[12] ZHUANG Z L, ZHANG Z L, TENG H, et al. Optimization for integrated scheduling of intelligent handling equipment with bidirectional flows and limited buffers at automated container terminals[J]. Computers and Operations Research, 2022, 145: 105863. 
[13]姜一啸, 吉卫喜, 何鑫, 等. 基于改进非支配排序遗传算法的多目标柔性作业车间低碳调度[J]. 中国机械工程, 2022, 33(21): 2564-2577. 
JIANG Y X, JI W X, HE X, et al. Low-carbon scheduling of multi-objective flexible job-shop based on improved NSGA-Ⅱ[J]. China Mechanical Engineering, 2022, 33 (21): 2564-2577. 
[14]黄辉, 李梦想, 严永. 考虑序列设置时间的混合流水车间多目标调度研究[J]. 运筹与管理, 2020, 29 (12): 215-221. 
HUANG H, LI M X, YAN Y. Research on multi-objective scheduling of hybrid flow production shop considering sequence setting time[J]. Operations Research and Management Science, 2020, 29(12): 215-221. 
[15]张洪亮, 徐公杰, 张金春. 带有学习效应的多阶段混合流水车间调度问题研究[J]. 重庆师范大学学报(自然科学版), 2021, 38(1): 87-95. 
ZHANG H L, XU G J, ZHANG J C. Research on multistage hybrid flow shop scheduling problem with learning effect[J]. Journal of Chongqing Normal University (Natural Science), 2021, 38(1): 87-95. 
[16]王丽萍, 任宇, 邱启仓, 等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44(8): 1590-1619. 
WANG L P, REN Y, QIU Q C, et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44 (8): 1590-1619.

更新日期/Last Update: 2024-12-30