[1]李 健,全智雯,周书贵,等.黄河流域气溶胶时空异质性及影响因素分析[J].郑州大学学报(工学版),2024,45(03):29-37.[doi:10. 13705 / j. issn. 1671-6833. 2024. 03. 014]
 LI Jian,QUAN Zhiwen,ZHOU Shugui,et al.Spatio-temporal Heterogeneity and Driving Factors of AOD in the Yellow River Basin[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):29-37.[doi:10. 13705 / j. issn. 1671-6833. 2024. 03. 014]
点击复制

黄河流域气溶胶时空异质性及影响因素分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年03期
页码:
29-37
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
Spatio-temporal Heterogeneity and Driving Factors of AOD in the Yellow River Basin
文章编号:
1671-6833(2024)03-0029-09
作者:
李 健1 全智雯2 周书贵1 马玉荣23
1. 郑州大学 地球科学与技术学院,河南 郑州 450001;2. 郑州大学 水利与交通学院,河南 郑州 450001;3. 郑州大 学 图书馆,河南 郑州 450001
Author(s):
LI Jian 1QUAN Zhiwen 2ZHOU Shugui 1MA Yurong 23
1. School of Geo-Science & Technology, Zhengzhou University, Zhengzhou 450001, China; 2. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 3. Library, Zhengzhou University, Zhengzhou 450001, China
关键词:
MODIS 气溶胶光学厚度 时空分布 影响因素 黄河流域
Keywords:
MODIS AOD spatio-temporal pattern influencing factors the Yellow River Basin
分类号:
X513
DOI:
10. 13705 / j. issn. 1671-6833. 2024. 03. 014
文献标志码:
A
摘要:
基于大尺度黄河流域的长时序气溶胶光学厚度( AOD) 的分析较少,且因素分析也集中在气象条件方面, 针对该问题,搜集了 MODIS 气溶胶产品数据,基于地理加权回归模型( GWR) 分析了整个黄河流域的时空变化特 征,定量探讨了地理环境、自然气象和社会经济对 AOD 的综合影响。 结果表明:黄河流域 AOD 整体为下降趋势,由 2001 年的 0. 38 下降至 2020 年的 0. 22。 AOD 的变化具有明显的季节性,春夏季高于秋冬季,这可能是气温、大气扩 散条件和植被覆盖等因素共同作用的结果;从空间分布角度来看,研究区 AOD 为自西向东呈现梯度递增分布,与 流域 DEM 分布趋势相反,说明地形与气溶胶之间有密切关联。 基于 GWR 模型的研究结果表明:地形植被对整个 黄河流域 AOD 影响程度最大,其次为社会经济、自然气象。 针对黄河流域内重点城市的研究结果表明:不同城市 气溶胶光学厚度的月际变化有较大差异,流域上游城市西宁、银川和包头的 AOD 水平较低,冬季 AOD 最高,夏季 AOD 最低,而中下游城市夏季 AOD 最高,冬季最低。
Abstract:
Studies on the long-term aerosol optical depth ( AOD) based on the large-scale Yellow River basin was limited, and most of them only focused on meteorological conditions. In this study, the MODIS aerosol optical depth ( AOD) products was collected, and then the temporal and spatial pattern of AOD and comprehensively quantified the impact of geographical environment, natural weather and social economy on AOD in the Yellow River Basin were analyzed based on the geographically weighted regression (GWR) . The results showed that the AOD exhibited a downward trend in the Yellow River Basin. The AOD value decreased from 0. 38 in 2001 to 0. 22 in 2022. Moreover, the distribution of AOD also showed obvious seasonal differences that AOD values in spring and summer were higher than in autumn and winter. This wight be the result of a combination of factors such as temperature, atmospheric diffusion conditions, and vegetation cover. From the perspective of spatial distribution, the AOD in the study area gradually increased from west to east. This trend was opposite to the distribution of DEM in the Yellow River Basin, indicating a close correlation between terrain and aerosols. The analysis of influencing factors based on GWR model showed that, for the entire Yellow River Basin, terrain and vegetation had the greatest impact on AOD in the Yellow River Basin, followed by socio-economic factors and natural meteorology. Prominent cities in the Yellow River Basin were also analyzed in the study, and the results showed that the inter-annual variation of AOD in different cities in the study area was quite different. The AOD values of Xining, Yinchuan and Baotou in the upper reaches of the Yellow River Basin showed a low level, with the highest value appearing in winter and the lowest value appearing in summer, while the AOD values of cities in the middle and lower reaches were the highest in summer and the lowest in winter.

参考文献/References:

[1] 毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述 [ J] . 气象学报, 2002, 60(5) : 625-634. MAO J T, ZHANG J H, WANG M H. Summary comment on research of atmospheric aerosl in China[ J] . Acta Meteorologica Sinica, 2002, 60(5) : 625-634. 

[2] ZHAO X W, GAO Q, SUN M, et al. Statistical analysis of spatiotemporal heterogeneity of the distribution of air quality and dominant air pollutants and the effect factors in Qingdao urban zones [ J ] . Atmosphere, 2018, 9 (4) : 135.
 [3] 孙忠保, 程先富, 夏晓圣. 中国气溶胶光学厚度的时 空分布及影响因素分析[ J] . 中国环境科学, 2021, 41 (10) : 4466-4475. SUN Z B, CHENG X F, XIA X S. Spatial-temporaldistribution and impact factors of aerosol optical depth over China [ J ] . China Environmental Science, 2021, 41 (10) : 4466-4475. 
[4] 郭霖, 孟飞, 马明亮. 华北平原 AOD 时空演化与影响 因素[ J] . 环境科学, 2022, 43(7) : 3483-3493. GUO L, MENG F, MA M L. Spatiotemporal variation and influencing factors of AOD in the North China plain [ J]. Environmental Science, 2022, 43(7): 3483-3493.
 [5] YANG X C, ZHAO C F, YANG Y K, et al. Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia [ J ] . Atmospheric Chemistry and Physics, 2021, 21(5) : 3803 -3825. 
[6] HAN X, LIU Y Q, GAO H, et al. Forecasting PM2. 5 induced male lung cancer morbidity in China using satellite retrieved PM2. 5 and spatial analysis[ J] . Science of the Total Environment, 2017, 607-608: 1009-1017. 
[7] PACIOREK C J, LIU Y, MORENO-MACIAS H, et al. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2. 5 [ J ] . Environmental Science & Technology, 2008, 42 ( 15 ) : 5800 -5806. 
[8] BELLOUIN N, BOUCHER O, HAYWOOD J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements [ J ] . Nature, 2005, 438 ( 7071 ) : 1138-1141. 
[9] 张志薇, 王宏斌, 张镭, 等. 中国 3 个 AERONET 站点 气溶胶微物理特性分析及比较[ J] . 中国环境科学, 2014, 34(8) : 1927-1937. ZHANG Z W, WANG H B, ZHANG L, et al. Analysis and comparison of the aerosol microphysical properties at three AERONET sites in China[ J] . China Environmental Science, 2014, 34(8) : 1927-1937. 
[10] HOLBEN B N, TANRÉ D, SMIRNOV A, et al. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET [ J ]. Journal of Geophysical Research: Atmospheres, 2001, 106(D11): 12067-12097. 
[11] LI Z Q, NIU F, LEE K H, et al. Validation and understanding of moderate resolution imaging spectroradiometer aerosol products ( C5) using ground-based measurements from the handheld Sun photometer network in China[ J] . Journal of Geophysical Research: Atmospheres, 2007, 112(D22) : 1-16. 
[12] LEVY R C, LEPTOUKH G G, KAHN R, et al. A critical look at deriving monthly aerosol optical depth from satellite data[ J] . IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8) : 2942-2956.
 [13] 景悦, 孙 艳 玲, 付 宏 臣, 等. 2010—2016 年 京 津 冀 AOD 时空变化及其影响因子分析[ J] . 环境科学与技 术, 2018, 41(8) : 104-113. JING Y, SUN Y L, FU H C, et al. Temporal and spatial variation of aerosol optical depth and analysis of influencing factors in Beijing-Tianjin-Hebei region from 2010 to 2016[ J] . Environmental Science & Technology, 2018, 41(8) : 104-113. 
[14] 张颖 蕾, 崔 希 民. 基 于 MODISC061 的 长 三 角 地 区 AOD 与 Angstrom 指数时空变化分析[ J] . 环境科学, 2020, 41(6) : 2617-2624. ZHANG Y L, CUI X M. Spatial and temporal characteristics of AOD and Angstrom exponent in the Yangtze River Delta based on MODISC061 [ J] . Environmental Science, 2020, 41(6) : 2617-2624.
 [15] ZHANG J H, MAO J T, WANG M H. Analysis of the aerosol extinction characteristics in different areas of China [ J ] . Advances in Atmospheric Sciences, 2002, 19 (1) : 136-152.
 [16] 杨飞, 易文利, 朱婵园, 等. 陕西省空气质量时空差 异研究[ J] . 四川环境, 2018, 37(2) : 78-85. YANG F, YI W L, ZHU C Y, et al. The temporal and spatial distribution characteristics of air quality in Shaanxi Province[ J] . Sichuan Environment, 2018, 37(2) : 78- 85. 
[17] 李治军, 卢松, 陈末, 等. 郑州市大气污染时空分布 特征分析及预测模型建立[ J] . 黑龙江大学自然科学 学报, 2019, 36(4) : 450-458. LI Z J, LU S, CHEN M, et al. Spatiotemporal distribution characteristics analysis and prediction model establishment of air pollution in Zhengzhou city[ J] . Journal oNatural Science of Heilongjiang University, 2019, 36 (4) : 450-458.
 [18] 沙涛, 张慧. 新乡市环境质量灰色关联分析[ J] . 环境 科学导刊, 2019, 38(5) : 85-88. SHA T, ZHANG H. Gray correlation analysis of environmental quality in Xinxiang city [ J] . Environmental Science Survey, 2019, 38(5) : 85-88.
 [19] 黄建平, 张国龙, 于海鹏, 等. 黄河流域近 40 年气候 变化的时空特征[ J] . 水利学报, 2020, 51(9) : 1048- 1058. HUANG J P, ZHANG G L, YU H P, et al. Characteristics of climate change in the Yellow River Basin during recent 40 years [ J ] . Journal of Hydraulic Engineering, 2020, 51(9) : 1048-1058.
 [20] 郭付友, 佟连军, 仇方道, 等. 黄河流域生态经济走 廊绿色发展时空分异特征与影响因素识别[ J] . 地理 学报, 2021, 76(3) : 726-739. GUO F Y, TONG L J, QIU F D, et al. Spatio-temporal differentiation characteristics and influencing factors of green development in the eco-economic corridor of the Yellow River Basin[ J] . Acta Geographica Sinica, 2021, 76(3) : 726-739.
 [21] CHE H Z, YANG L K, LIU C, et al. Long-term validation of MODIS C6 and C6. 1 dark target aerosol products over China using CARSNET and AERONET[ J] . Chemosphere, 2019, 236: 124268. 
[22] 薛瑞. 基于 MODIS 数据研究中国气溶胶时空分布变 化及典型地区的影响因素[D] . 青岛: 山东科技大学, 2020. XUE R. The temporal and spatial distribution characteristics of aerosols and the influencing factors of typical regions in China based on MODIS data [ D ] . Qingdao: Shandong University of Science and Technology, 2020. 
[23] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity [ J ] . Geographical Analysis, 1996, 28(4) : 281-298. 
[24] 张静, 张丽芳, 濮励杰, 等. 基于 GWR 模型的城市住 宅地价的时空演变研究: 以江苏省为例[ J] . 地理科 学, 2012, 32(7) : 828-834. ZHANG J, ZHANG L F, PU L J, et al. Research on spatio-temporal variation of urban residential land price based on GWR model: a case study of Jiangsu Province [ J ] . Scientia Geographica Sinica, 2012, 32 ( 7 ) : 828-834.
 [25] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Geographically weighted summary statistics—a framework for localised exploratory data analysis[ J] . Computers, Environment and Urban Systems, 2002, 26 ( 6 ) : 501-524. 
[26] HE L J, WANG L C, HUANG B, et al. Anthropogenic and meteorological drivers of 1980- 2016 trend in aerosol optical and radiative properties over the Yangtze River Basin[ J] . Atmospheric Environment, 2020, 223: 117188.
 [27] 覃文忠. 地理加权回归基本理论与应用研究[ D] . 上 海: 同济大学, 2007. QIN W Z. The basic theoretics and application research on geographically weighted regression [ D ] . Shanghai: Tongji University, 2007.
 [28] 丁宇, 李贵才, 路旭, 等. 空间异质性及绿色空间对 大气污染的削减效应: 以大珠江三角洲为例[ J] . 地 理科学进展, 2011, 30(11) : 1415-1421. DING Y, LI G C, LU X, et al. Spatial heterogeneity and air pollution removal by green space in greater Pearl River Delta [ J ] . Progress in Geography, 2011, 30 ( 11 ) : 1415-1421. 
[29] 左其亭, 王鹏抗, 张志卓, 等. 黄河流域水资源利用 水平及提升途径[ J] . 郑州大学学报(工学版) , 2023, 44(3) : 12-19. ZUO Q T, WANG P K, ZHANG Z Z, et al. Utilization level and improvement approach of water resources in the Yellow River Basin[ J] . Journal of Zhengzhou University (Engineering Science) , 2023, 44(3) : 12-19. 
[30] 甘泉. 低中间层逆温层和大气潮汐的 TIMED / SABER 观测研究[D] . 武汉: 武汉大学, 2012. GAN Q. TIMED / SABER observations of lower mesospheric inversion layers and atmospheric tides[ D] . Wuhan: Wuhan University, 2012.
 [31] WHITEAKER J R, SUESS D T, PRATHER K A. Effects of meteorological conditions on aerosol composition and mixing state in Bakersfield, CA[ J] . Environmental Science & Technology, 2002, 36(11) : 2345-2353.
 [32] CUHADAROGLU B, DEMIRCI E. Influence of some meteorological factors on air pollution in Trabzon city [ J] . Energy and Buildings, 1997, 25(3) : 179-184.
 [33] 郭伟, 程燕, 樊巍, 等. 西安市大气污染物浓度特征 及影响因素分 析 [ J] . 地 球 环 境 学 报, 2014, 5 ( 4) : 235-242. GUO W, CHENG Y, FAN W, et al. Characteristics and affecting factors of atmospheric pollutants in Xi’ an[ J] . Journal of Earth Environment, 2014, 5(4) : 235-242.

更新日期/Last Update: 2024-04-29