[1]岑勋云,刘忠玉,张景伟,等.基于分段线性化的泥浆一维电渗脱水模型[J].郑州大学学报(工学版),2024,45(03):22-28.[doi:10. 13705 / j. issn. 1671-6833. 2024. 03. 003]
 CEN Xunyun,LIU Zhongyu,ZHANG Jingwei,et al.One Dimensional Electroosmotic Dewatering Model of Mud Based on Piecewise Linearization[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):22-28.[doi:10. 13705 / j. issn. 1671-6833. 2024. 03. 003]
点击复制

基于分段线性化的泥浆一维电渗脱水模型()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年03期
页码:
22-28
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
One Dimensional Electroosmotic Dewatering Model of Mud Based on Piecewise Linearization
文章编号:
1671-6833(2024)03-0022-07
作者:
岑勋云1 刘忠玉1 张景伟1 罗文培1 汪良强2
1. 郑州大学 土木工程学院,河南 郑州 450001;2. 郑州三和水工机械有限公司,河南 郑州 450120
Author(s):
CEN Xunyun 1LIU Zhongyu 1ZHANG Jingwei 1LUO Wenpei 1WANG Liangqiang 2
1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001,China; 2. Zhengzhou Sanhe Hydraulic Machinery Co. , Ltd. , Zhengzhou 450120, China
关键词:
电渗脱水 泥浆 分段线性化 电势 电渗透系数 模型试验
Keywords:
electroosmotic dewatering mud piecewise linearization electric potential electroosmotic coefficient model tes
分类号:
TU43
DOI:
10. 13705 / j. issn. 1671-6833. 2024. 03. 003
文献标志码:
A
摘要:
为进一步深入探讨泥浆电渗脱水的影响因素,基于分段线性化方法,建立了泥浆一维电渗脱水模型。 该模 型考虑了电势梯度、孔隙比等因素对泥浆电渗透系数的综合影响,可以描述泥浆的非线性应力应变关系和大变形 效应。 与相关解析解及室内模型试验的对比结果表明:所提模型分析结果的误差不超过 5%。 在此基础上,分析了 加载电压、压缩指数、电渗透系数等参数对泥浆电渗脱水过程的影响,结果表明:增大加载电压和电渗透系数,可提 高最终脱水量和缩短稳定时间;随着泥浆压缩性的提高,泥浆最终脱水量增大、稳定时间延长。
Abstract:
Based on piecewise-linear method, a one-dimensional electroosmotic dewatering model of mud was proposed in order to further explore the influence factors of mud electroosmotic dehydration.In this model, the combined influence of potential gradient and void ratio on the electroosmotic coefficient of mud and the nonlinear stress-strain relationship and large deformation effect of mud were considered. Compared with the results of relevant analytical solutions and laboratory model tests, the error of this model was less than 5%. On this basis, the influences of loading voltage,compression index and electroosmotic coefficient on the process of mud electroosmosis dehydration were analyzed.The results showed that the increase of loading voltage and electroosmotic coefficient could improve the final water removal and shorten the stabilization time. With the increase of mud compressibility, the final dewatering volume of mud increased, but the stabilization time was prolonged.

参考文献/References:

[1] 詹良通, 张斌, 郭晓刚, 等. 废弃泥浆底部真空-上部 堆载预 压 模 型 试 验 研 究 [ J ] . 岩 土 力 学, 2020, 41 (10) : 3245-3254. ZHAN L T, ZHANG B, GUO X G, et al. Physical modeling study on treatment of waste slurry with vacuum preloading at bottom combined with upper surcharge loading [ J ] . Rock and Soil Mechanics, 2020, 41 ( 10 ) : 3245-3254.

 [2] 田浩, 赵会军. 废弃油基泥浆处理工 艺 与 研 究 [ J] . 环境工程, 2014, 32(增刊 1) : 310-313. TIAN H, ZHAO H J. Waste oil-based mud treatment technology and research[ J] . Environmental Engineering, 2014, 32( S1) : 310-313. 
[3] 严晓威, 柳忠现, 王盛, 等. 3 种污泥机械脱水方式的 工程应 用 [ J] . 净 水 技 术, 2022, 41 ( 增 刊 2) : 100 -105. YAN X W, LIU Z X, WANG S, et al. Engineering application of three mechanical dewatering methods of sludge [ J ] . Water Purification Technology, 2022, 41 ( S2) : 100-105.
 [4] 郑华,尹昭宇,林宇杰,等. 土工管袋用于湿地疏浚淤 泥脱水处 理 效 果 评 估 [ J] . 浙 江 水 利 科 技, 2022, 50 (4) : 51-55. ZHENG H, YIN Z Y, LIN Y J, et al. Evaluation of dehydration treatment effect of wetland dredged sludge with geotextile pipe bags[ J] . Zhejiang Hydrotechnics, 2022, 50(4) : 51-55.
 [5] 王文军, 袁飞飞, 蒋建良, 等. 高含水率吹填淤泥固 化土强度特性及预测模型[ J] . 地下空间与工程学报, 2021, 17(2) : 461-467. WANG W J, YUAN F F, JIANG J L, et al. Strength properties and prediction models of solidified dredger filled mud with high water-content [ J] . Chinese Journal of Underground Space and Engineering, 2021, 17 ( 2) : 461-467. 
[6] 党星赛, 谢靖宇, 洪钊, 等. 极高含水率疏浚泥浆的 絮凝机理和颗粒尺寸变化规律研究 [ J] . 科技通报, 2022, 38(2) : 67-72. DANG X S, XIE J Y, HONG Z, et al. Study on the flocculation mechanism and particle size change law of dredged mud with extremely high water content[ J] . Bulletin of Science and Technology, 2022, 38(2) : 67-72. 
[7] 臧小龙. 新型泥水分离处理系统在盾构隧道施工中的 应用[ J] . 建筑机械, 2012(23) : 122-124, 20. ZANG X L. Application of new slurry separate disposal system for construction of shield machine tunnel [ J ] . Construction Machinery, 2012(23) : 122-124, 20. 
[8] 朱群峰, 赵士文, 杨守华, 等. 围海造地软基加固试 验研究[ J] . 郑州大学学报( 工学版) , 2012, 33( 5) : 16-21. ZHU Q F, ZHAO S W, YANG S H, et al. Consolidation of soft foundation of reclamation projects[ J] . Journal of Zhengzhou University ( Engineering Science) , 2012, 33 (5) : 16-21. 
[9] 魏雁冰, 范明桥, 林生法, 等. 建筑废弃泥浆真空预 压方法处理试验研究[ J] . 郑州大学学报( 工学版) , 2016, 37(1) : 65-69. WEI Y B, FAN M Q, LIN S F, et al. Experimental study on construction waste slurry treatment by vacuum preloading[ J] . Journal of Zhengzhou University ( Engineering Science) , 2016, 37(1) : 65-69.
 [10] 王军,张乐,刘飞禹,等. 真空预压-电渗法联合加固软 黏土地基试验研究[ J] . 岩石力学与工程学报,2014, 33(增刊 2) :4181-4192. WANG J, ZHANG L, LIU F Y, et al. Experimental study of vacuum preloading combined reinforcement with electro-osmosis in soft clay ground [ J] . Chinese Journal of Rock Mechanics and Engineering, 2014, 33 ( S2 ) : 4181-4192.
 [11] ESRIG M I. Pore pressures, consolidation, and electrokinetics[ J] . Journal of the Soil Mechanics and Foundations Division, 1968, 94(4) : 899-921. 
[12] 王柳江, 刘斯宏, 王子健, 等. 堆载-电渗联合作用下 的一维非线性大变形固结理论[ J] . 工程力学, 2013, 30(12) : 91-98. WANG L J, LIU S H, WANG Z J, et al. A consolidation theory for one-dimensional large deformation problems under combined action of load and electroosmosis[ J] . Engineering Mechanics, 2013, 30(12) : 91-98.
 [13] FOX P J, BERLES J D. CS2: a piecewise-linear model for large strain consolidation[ J] . International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(7) : 453-475.
 [14] 周亚东, 王保田, 邓安. 分段线性电渗-堆载耦合固结 模型[ J] . 岩土工程学报, 2013, 35(12) : 2311-2316. ZHOU Y D, WANG B T, DENG A. Piecewise-linear model for electro-osmosis-surchargepreloadingcoupled consolidation[ J] . Chinese Journal of Geotechnical Engineering, 2013, 35(12) : 2311-2316.
 [15] 周亚东, 邓安, 刘中宪, 等. 考虑饱和度变化的一维 电渗固 结 模 型 [ J] . 岩 土 工 程 学 报, 2017, 39 ( 8) : 1524-1529. ZHOU Y D, DENG A, LIU Z X, et al. One-dimensional electroosmosis consolidation model considering variable saturation[ J] . Chinese Journal of Geotechnical Engineering, 2017, 39(8) : 1524-1529. 
[16] 谢康和, 郑辉, LEO C J. 软黏土一维非线性大应变固 结 解 析 理 论 [ J ] . 岩 土 工 程 学 报, 2002, 24 ( 6 ) : 680-684. XIE K H, ZHENG H, LEO C J. An analytical theory for 1-D nonlinear large strain consolidation of soft clay [ J] . Chinese Journal of Geotechnical Engineering, 2002, 24 (6) : 680-684. 
[17] MITCHELL J K. 岩土工程土性分析原理[ M] . 高国瑞, 译. 南京: 南京工学院出版社,1988: 371-382. MITCHELL J K. Principle of geotechnical engineering and soil property analysis[ M] . Translated by Gao Guorui. Nangjing: Nanjing Institute of Technology Press, 1988: 371-382. 
[18] 庞宽, 刘斯宏, 吴澎, 等. 电渗法加固软土地基基本参 数室内试验研究[J]. 水运工程, 2011(3): 148-153. PANG K, LIU S H, WU P, et al. Lab experimental study on electro-osmotic parameters for soft soil consolidation[ J] . Port & Waterway Engineering, 2011(3) : 148- 153.
 [19] 李瑛. 软黏土地基电渗固结试验和理论研究[ D] . 杭 州: 浙江大学, 2011. LI Y. Experimental and theoretic study on electro-osmotic consolidation of soft clay foundation [ D ] . Hangzhou: Zhejiang University,2011. [20] 罗文培. 泥浆电渗脱水试验与理论研究[ D] . 郑州: 郑州大学, 2022. LUO W P. Experimental and theoretical study on electroosmotic dewatering of mud [ D] . Zhengzhou: Zhengzhou University,2022. 
[21] ZHOU Y D, DENG A. Modelling combined electroosmosis-vacuum-surcharge preloading consolidation considering large-scale deformation[ J] . Computers and Geotechnics, 2019, 109: 46-57.

更新日期/Last Update: 2024-04-29