[1] 姜鸣, 赵红宇, 刘学良. 一种基于聚类分析的自适应 步态检测方法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2017, 38(3) : 63-67. JIANG M, ZHAO H Y, LIU X L. An adaptive gait detection method based on clustering analysis [ J] . Journal of Zhengzhou University ( Engineering Science) , 2017, 38(3) : 63-67.
[2] 王军芬,刘培跃,董建彬,等. 用于分割无损检测图像 的快速模糊 C 均值算法[ J] . 郑州大学学报(工学版) , 2022,43(6) :42-48.
WANG J F, LIU P Y, DONG J B, et al. Fast fuzzy C means algorithm for segmentation of non-destructive testing image [ J] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(6) :42-48.
[3] AGRESTI A. An introduction to categorical data analysis [M] . New York:John Wiley & Sons, 2018.
[4] HAMMING R W. Error detecting and error correcting codes[ J] . The Bell System Technical Journal, 1950, 29 (2) : 147-160.
[5] AHMAD A, KHAN S S. Survey of state-of-the-art mixed data clustering algorithms [ J ] . IEEE Access, 2019, 7: 31883-31902.
[6] HUANG Z X. Clustering large data sets with mixed numeric and categorical values [ C ] / / Proceedings of the First Pacific-Asia Conference on Knowledge Discovery and Data Mining. New York:Springer,1997: 21-34.
[7] HUANG J Z, NG M K, RONG H Q, et al. Automated variable weighting in k-means type clustering[ J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5) : 657-668.
[8] IENCO D, PENSA R, MEO R. From context to dis- 60 郑 州 大 学 学 报 (工 学 版) 2023 年 tance: learning dissimilarity for categorical data clustering [ J] . ACM Transactions on Knowledge Discovery From Data, 2012, 6,(1) : 1-25.
[9] JIAN S L, CAO L B, LU K, et al. Unsupervised coupled metric similarity for non-IID categorical data [ J] . IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9) : 1810-1823.
[10] AGRESTI A. Analysis of ordinal categorical data [ M] . Hoboken: Wiley, 2010.
[11] ZHANG Y Q, CHEUNG Y M. A new distance metric exploiting heterogeneous interattribute relationship for ordinal-and-nominal-attribute data clustering [ J ] . IEEE Transactions on Cybernetics, 2022, 52(2) : 758-771.
[12] ZHANG Y Q, CHEUNG Y M. Learnable weighting of intra-attribute distances for categorical data clustering with nominal and ordinal attributes[ J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7) : 3560-3576.
[13] CHEUNG Y M, JIA H. Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number[ J] . Pattern Recognition, 2013, 46(8) : 2228-2238.
[14] JIA H, CHEUNG Y M. Subspace clustering of categorical and numerical data with an unknown number of clusters [ J] . IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8) : 3308-3325.
[15] OOSTERHOFF J, VAN ZWET W R. A note on contiguity and hellinger distance [ EB / OL ] . ( 2011 - 01 - 01 ) [ 2022 - 03 - 12 ] . https: / / doi. org / 10. 1007 / 978 - 1 - 4614-1314-1_6.