[1]罗 石,刘艳广,虞井生,等.基于积分滑模的电子机械制动系统 ABS 控制[J].郑州大学学报(工学版),2024,45(01):34-39.[doi:10.13705/j.issn.1671-6833.2023.04.009]
 LUO Shi,LIU Yanguang,YU Jingsheng,et al.ABS Control of Electronic Mechanical Braking System Based on Integral Sliding Mode[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):34-39.[doi:10.13705/j.issn.1671-6833.2023.04.009]
点击复制

基于积分滑模的电子机械制动系统 ABS 控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年01期
页码:
34-39
栏目:
出版日期:
2024-01-19

文章信息/Info

Title:
ABS Control of Electronic Mechanical Braking System Based on Integral Sliding Mode
作者:
罗 石 刘艳广 虞井生 李灵恩 丁 华
江苏大学 汽车与交通工程学院,江苏 镇江 212013
Author(s):
LUO Shi LIU Yanguang YU Jingsheng LI Ling′en DING Hua
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
关键词:
电子机械制动 路面识别 峰值附着系数 ABS 积分滑模
Keywords:
electronic mechanical braking road identification peak adhesion coefficient ABS integral sliding mode
DOI:
10.13705/j.issn.1671-6833.2023.04.009
文献标志码:
A
摘要:
为解决传统制动系统逻辑门限控制存在逻辑复杂且难以充分利用路面附着的问题,以及 ABS 存在的非线 性、不确定性问题,提出了一种基于路面识别的 ABS 控制策略应用在电子机械制动系统。 首先,通过 Simulink 建立 1 / 4 车辆制动模型;其次,分析附着系数在不同路面存在的差异性以及附着系数和车轮角减速度的变化规律,设计 了一种高效且准确的路面识别算法来估算当前路面的最佳滑移率;最后,设计了基于积分滑模控制的 ABS 控制策 略跟踪最佳滑移率。 仿真结果表明:路面识别算法识别响应快、识别准确度高;所设计的 ABS 控制策略能够稳定跟 踪最佳滑移率,对不同路面工况具有较强的适应性。 与基于逻辑门限控制的传统制动系统相比,在单路面条件下 制动时 间 减 少 了 11. 89%, 制 动 距 离 缩 短 了 12. 7%; 在 变 路 面 条 件 下 制 动 时 间 减 少 了 17. 8%, 制 动 距 离 缩 短 了 19. 9%。
Abstract:
In order to solve the disadvantages of traditional brake system logic threshold control, which was complicated in logic and difficult to make full use of road adhesion, and the problems of nonlinearity and uncertainty of ABS, a control strategy of ABS based on road identification on the basis of electronic mechanical braking system was proposed. Firstly, quarter vehicle braking model was established through Simulink. Next, the differences of adhesion coefficient on different road conditions and the variation rules of adhesion coefficient and wheel angle deceleration were analyzed. An efficient and accurate road identification algorithm was designed to estimate the optimal slip rate of the current road surface. Finally, an ABS control strategy based on integral sliding mode control was designed to track the optimal slip rate. The simulation results showed that the road identification algorithm had fast response and high accuracy. The designed ABS control strategy could stably track the optimal slip rate and had strong adaptability to different road conditions. Compared with the traditional braking system based on logical threshold control, on single road condition the braking time was reduced by 11. 89%, and the braking distance was shortened by 12. 7%. On variable road condition the braking time was reduced by 17. 8%, and the braking distance was shortened by 19. 9%.

参考文献/References:

[1] 张三川, 马啸. 基于轨迹加权预测的主动避撞安全距离模型及算法[J]. 郑州大学学报(工学版), 2022, 43(3): 104-110.ZHANG S C, MA X. A safe distance model and algorithm for active collision avoidance based on weighted prediction of trajectory[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 104-110.

[2] 王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动驾驶车控制算法研究[J]. 郑州大学学报(工学版), 2020, 41(4): 41-45, 80.WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 41-45, 80.
[3] MENG B M, YANG F F, LIU J G, et al. A survey of brake-by-wire system for intelligent connected electric vehicles[J]. IEEE Access, 2020, 8: 225424-225436.
[4] ZHANG L, ZHANG Z Q, WANG Z P, et al. Chassis coordinated control for full X-by-wire vehicles-a review[J].Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-25.
[5] LIU Y H, et al. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm[J]. Mechanical Systems and Signal Processing, 2017, 88: 25-35.[6] ZAREIAN A, AZADI S, KAZEMI R. Estimation of road friction coefficient using extended Kalman filter, recursive least square, and neural network[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2016, 230(1): 52-68.
[7] HE R, ZHANG L W. Interval recognition algorithm of the pavement surface condition based on Lagrange interpolation method[J]. Mathematical Problems in Enginee-ring, 2020, 2020: 1-8.
[8] 潘辉, 李礼夫. 基于路面识别的汽车ABS滑模控制方法的研究[J]. 现代制造工程, 2011(2): 43-47.PAN H, LI L F. The research of ABS′ sliding-mode control method based on road automatic identification[J]. Modern Manufacturing Engineering, 2011(2): 43-47.
[9] 邱明明, 曹龙凯, 黄康, 等. 基于视觉识别的线控制动压力滑模控制[J]. 汽车工程, 2021, 43(1): 68-76, 85.QIU M M, CAO L K, HUANG K, et al. Brake by wire pressure sliding mode control based on visual recognition[J]. Automotive Engineering, 2021, 43(1): 68-76, 85.
[10] 王国微, 尹安东. 基于神经网络路面识别的电动汽车ABS控制研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(7): 878-883.WANG G W, YIN A D. Research on ABS control of electric vehicle based on road recognition using neural network[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(7): 878-883.
[11] PENG X Y, JIA M F, HE L, et al. Fuzzy sliding mode control based on longitudinal force estimation for electro-mechanical braking systems using BLDC motor[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 142-151.
[12] 尘帅, 王吉忠, 郑龙月, 等. 基于制动意图的线控制动系统滑模变结构控制[J]. 济南大学学报(自然科学版), 2019, 33(5): 425-430, 438.CHEN S, WANG J Z, ZHENG L Y, et al. Sliding mode variable structure control of brake-by-wire system based on braking intention[J]. Journal of University of Jinan (Science and Technology), 2019, 33(5): 425-430, 438.

更新日期/Last Update: 2024-01-24