[1]滕志军,李 梦,谷金亮,等.融合多指标的WSN动态信任评估预测模型[J].郑州大学学报(工学版),2023,44(03):78-84.[doi:10.13705/j.issn.1671-6833.2022.06.014]
 ENG Zhijun,LI Meng,GU Jinliang,et al.A Dynamic Trust Evaluation and Prediction Model for WSN Based on Multiple Indexes[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):78-84.[doi:10.13705/j.issn.1671-6833.2022.06.014]
点击复制

融合多指标的WSN动态信任评估预测模型()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
78-84
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
A Dynamic Trust Evaluation and Prediction Model for WSN Based on Multiple Indexes
作者:
滕志军12 李 梦2 谷金亮2 于沥博2 王继红12
1.东北电力大学 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林 吉林 132012; 2.东北电力大 学 电气工程学院,吉林 吉林 132012

Author(s):
ENG Zhijun12LI Meng2GU Jinliang2YU Libo2WANG Jihong12
1.Northeast Electric Power University Modern Electric Power System Simulation Control and Green Energy New Technology Education Key Laboratory, Jilin and Jilin 132012, 2.School of Electrical Engineering, Northeast Electric Power University, Jilin Jilin 132012, School of Electrical Engineering, Northeast Electric Power University, Jilin Jilin 132012

关键词:
模糊综合评判 贴近度理论 无线传感器网络 信任阈值
Keywords:
fuzzy comprehensive evaluation similarity measure theory wireless sensor network trust threshold
分类号:
TP273
DOI:
10.13705/j.issn.1671-6833.2022.06.014
文献标志码:
A
摘要:
针对无线传感器网络中恶意节点引发的安全问题,在贝叶斯信任模型基础上,引入信誉维护函数自适应 降低前期节点交互行为次数的影响,引入异常弱化因子,降低由网络自身故障所带来的节点异常行为的误检,结合 模糊评判方法进行直接信任计算,为提高推荐信任评估的可靠性,采用贴近度理论对不同的推荐节点赋予权重再 分配获取间接信任,为提高信任模型的检测精度,采用加权因子,由直接信任值以及间接信任中的变量共同确定综 合信任值的大小,借助自适应权值动态更新综合信任值,有效避免短时间内信任的迅速提升,并利用滑动时间窗对 综合信任值进行预测,搭建了融合多指标的 WSN 动态信任评估预测模型 FSEPM,将预测信任值与实际信任值的差 值与信任阈值相比较,以判定节点性质。仿真结果表明: 该信任评估模型可精确可靠评估节点之间的信任关系,能 够有效检测出网络中的恶意节点,提高网络的安全性。
Abstract:
To address the security problems caused by malicious nodes in wireless sensor networks, in this study, based on the Bayesian trust models, the adaptive reputation maintenance function was introduced to reduce the influence of the previous node and number of interaction, and the abnormal weakening factor was introduced to reduce the false detection of node by the abnormal behaviors caused by network faults, and combined with the fuzzy evaluation mechanism, to calculate direct trust. In order to improve the reliability of recommendation trust evaluation, the similarity measure theory was adopted to assign weight to different recommendation nodes and redistribute to obtain indirect trust. In order to improve the detection accuracy of the trust model, a weighted factor was adopted to determine the size of the comprehensive trust value jointly by variables in direct and indirect trust. Using the adaptive weighting dynamic updating comprehensive trust value, it could effectively avoid the rapid promotion of trust in a short time, and use the sliding time window to predict the comprehensive trust value. The WSN dynamic trust evaluation and prediction model integrating multiple indicators FSEPM was built. The difference between the predicted trust value and the actual trust value was compared with the trust threshold to judge the node property. Simulation results showed that the trust evaluation model could accurately and reliably evaluate the trust relationship between nodes, detect malicious nodes effectively, and improve the security of wireless sensor networks.

参考文献/References:

[1] 李建坡, 张庆华, 张展图, 等. 基于拥塞控制的无线传感器网络能耗优化路由算法[J]. 东北电力大学学报, 2020, 40(4): 69-74.LI J P, ZHANG Q H, ZHANG Z T, et al. Congestion control and energy optimization routing algorithm for wireless sensor networks[J]. Journal of Northeast Electric Power University, 2020, 40(4): 69-74.

[2] 张安琳, 张启坤, 黄道颖, 等. 基于CNN与BiGRU融合神经网络的入侵检测模型[J]. 郑州大学学报(工学版), 2022, 43(3): 37-43.ZHANG A L, ZHANG Q K, HUANG D Y, et al. Intrusion detection model based on CNN and BiGRU fused neural network[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 37-43.
[3] FANG W D, ZHANG C L, SHI Z D, et al. BTRES: beta-based trust and reputation evaluation system for wireless sensor networks[J]. Journal of Network and Computer Applications, 2016, 59: 88-94.
[4] RAM P V, LATHA P. Fuzzy trust protocol for malicious node detection in wireless sensor networks[J]. Wireless Personal Communications, 2017, 94(4): 2549-2559.
[5] KURDI H, ALFARIES A, AL-ANAZI A, et al. A lightweight trust management algorithm based on subjective logic for interconnected cloud computing environments[J]. The Journal of Supercomputing, 2019, 75(7): 3534-3554.
[6] BUSI R V, VENKATARAMAN S, NEGI A. Communication and data trust for wireless sensor networks using D-S theory[J]. IEEE Sensors Journal, 2017, 17(12): 3921-3929.
[7] YIN X Q, LI S N. Trust evaluation model with entropy-based weight assignment for malicious node′s detection in wireless sensor networks[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 198.
[8] 尹荣荣, 张文元, 杨绸绸, 等. 基于简化云与K/N投票的选择性转发攻击检测方法[J]. 电子与信息学报, 2020, 42(12): 2841-2848.YIN R R, ZHANG W Y, YANG C C, et al. A selective forwarding attack detection method based on simplified cloud and K/N voting model[J]. Journal of Electronics &Information Technology, 2020, 42(12): 2841-2848.
[9] 秦丹阳, 贾爽, 杨松祥, 等. 基于信任感知的无线传感器网络安全路由机制研究[J]. 通信学报, 2017, 38(10): 60-70.QIN D Y, JIA S, YANG S X, et al. Research on trust sensing based secure routing mechanism for wireless sensor network[J]. Journal on Communications, 2017, 38(10): 60-70.
[10] 滕志军, 杜春秋, 孙汇阳, 等. 融合节点信誉度和路径跳数的WSNs虫洞攻击检测策略[J]. 哈尔滨工业大学学报, 2021, 53(8): 64-71, 131.TENG Z J, DU C Q, SUN H Y, et al. A wormhole attack detection strategy integrating node creditworthiness and path hops in WSNs[J]. Journal of Harbin Institute of Technology, 2021, 53(8): 64-71, 131.
[11] 王秋惠. 基于空间自回归模型的电力系统中长期负荷特性分析与预测[J]. 东北电力大学学报, 2021, 41(3): 118-123.WANG Q H. The characteristic analysis and forecasting of mid-long term load based on spatial autoregressive model[J]. Journal of Northeast Electric Power University, 2021, 41(3): 118-123.
[12] 陈浩杰, 黄锦, 左兴权, 等. 基于宽度&深度学习的基站网络流量预测方法[J]. 郑州大学学报(工学版), 2022, 43(1): 7-13.CHEN H J, HUANG J, ZUO X Q, et al. Base Station network traffic prediction method based on wide &deep learning[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(1): 7-13.
[13] FENG R J, HAN X N, LIU Q, et al. A credible Bayesian-based trust management scheme for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2015, 11(11): 678926.
[14] 叶正旺, 温涛, 刘振宇, 等. 基于信任模型的WSNs安全数据融合算法[J]. 东北大学学报(自然科学版), 2019, 40(6): 789-794.YE Z W, WEN T, LIU Z Y, et al. An algorithm of trust-based secure data aggregation for wireless sensor networks[J]. Journal of Northeastern University (Natural Science), 2019, 40(6): 789-794.

相似文献/References:

[1]张延欣.多级模糊层次综合评价方法在企业评价中的应用[J].郑州大学学报(工学版),1995,16(04):94.
 Zhang Yanxin.The application of multi -level fuzzy layer comprehensive evaluation methods in corporate evaluation[J].Journal of Zhengzhou University (Engineering Science),1995,16(03):94.

更新日期/Last Update: 2023-05-09