[1]高金星,李丽亚,穆菁华,等.骨替代生物陶瓷材料的研究现状[J].郑州大学学报(工学版),2023,44(04):80-87.[doi:10.13705/j.issn.1671-6833.2023.01.010]
 GAO Jinxing,LI Liya,MU Jinghua,et al.Research Status of Bioceramic Materials for Bone Substitute[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):80-87.[doi:10.13705/j.issn.1671-6833.2023.01.010]
点击复制

骨替代生物陶瓷材料的研究现状()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年04期
页码:
80-87
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Research Status of Bioceramic Materials for Bone Substitute
作者:
高金星1 李丽亚1 穆菁华1 徐恩霞1 刘新红1 马成良1 张 灿2 张丽果2
1.郑州大学 材料科学与工程学院,河南 郑州 450052, 2.郑州大学 河南省医药科学研究院,河南 郑州 450001

Author(s):
GAO Jinxing1 LI Liya1 MU Jinghua1 XU Enxia1 LIU Xinhong1 MA Chengliang1 ZHANG Can2 ZHANG Liguo2
1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, Henan, 2.Institute of Medical Sciences, Henan Provincial Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan

关键词:
骨替代材料 生物陶瓷材料 复合材料 生物性能 物化性能
Keywords:
bone substitute materials bioceramic materials compound material biological properties physical and chemical properties
分类号:
Q819;TQ174
DOI:
10.13705/j.issn.1671-6833.2023.01.010
文献标志码:
A
摘要:
针对骨替代生物材料的发展需求,简述了骨替代用高分子材料、金属材料、生物陶瓷材料和复合材料 的发展现状,着重介绍了生物陶瓷材料作为骨替代材料在力学性能、化学性能和生物性能方面的优势。 生物 陶瓷材料因密度和成分与人骨相近、生物相容性显著、机械强度高、化学性质稳定等特点,在当今的骨替代材 料领域中扮演着重要角色。 对以磷酸盐、硅酸盐、氧化物和非氧化物为代表的生物陶瓷材料的研究现状进行 了系统地探讨,并对生物陶瓷材料及其复合材料用于骨替代生物材料的优势和局限性进行讨论,最后对生物 陶瓷材料未来的发展方向进行了展望。
Abstract:
In view of the development demand of biomaterials for bone substitute, the development status of polymer materials, metal materials, bioceramic materials and composite materials for bone replacement were summarized, and the advantages of bioceramic materials in mechanical properties, chemical properties and biological properties as bone substitute materials were emphatically introduced. The bioceramic materials play an important role in the field of bone substitute materials due to their similar density and composition to human bone, significant biocompatibility, high mechanical strength, and stable chemical properties. In this paper, the research status of bioceramic materials represented by phosphate, silicate, oxides and non-oxides is systematically discussed, and the advantages and limitations of bioceramic materials and their composites as bone substitute biomaterials are discussed. Finally, the future development direction of bioceramic materials is prospected.

参考文献/References:

[1] D′ALESSANDRO D, RICCI C, MILAZZO M, et al. Piezoelectric signals in vascularized bone regeneration[J]. Biomolecules, 2021, 11(11): 1731.

[2] SALGADO A J, COUTINHO O P, REIS R L. Bone tissue engineering: state of the art and future trends[J]. Macromolecular Bioscience, 2004, 4(8): 743-765.
[3] SRINATH P, ABDUL AZEEM P, VENUGOPAL REDDY K. Review on calcium silicate-based bioceramics in bone tissue engineering[J]. International Journal of Applied Ceramic Technology, 2020, 17(5): 2450-2464.
[4] TOMMASI G, PERNI S, PROKOPOVICH P. An injectable hydrogel as bone graft material with added antimicrobial properties[J]. Tissue Engineering Part A, 2016, 22(11/12): 862-872.
[5] 李少鹏, 陈豪杰, 杨帆, 等. 可降解镁金属在骨科中的应用[J]. 生物骨科材料与临床研究, 2021, 18(4): 92-96.LI S P, CHEN H J, YANG F, et al. Application of degradable magnesium metal in orthopaedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2021, 18(4): 92-96.
[6] SHEKHAWAT D, SINGH A, BANERJEE M K, et al. Bioceramic composites for orthopaedic applications: a comprehensive review of mechanical, biological, and microstructural properties[J]. Ceramics International, 2021, 47(3): 3013-3030.
[7] SHUAI C J, YU L, FENG P, et al. Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: the role of coupling agent[J]. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111083.
[8] BIASETTO L, BERTOLINI R, ELSAYED H, et al. Use of cryogenic machining to improve the adhesion of sphene bioceramic coatings on titanium substrates for dental and orthopaedic applications[J]. Ceramics International, 2019, 45(5): 5941-5951.
[9] 邹云, 王起龙, 李阳, 等. 基于超声纳米表面改性的镁锂合金强化研究[J]. 郑州大学学报(工学版), 2020, 41(5): 26-30.ZOU Y, WANG Q L, LI Y, et al. Strengthening research of Mg-Li alloy based on ultrasonic nanocrystal surface modification[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 26-30.
[10] DE JONG W F. La substance minérale dans les os[J]. Recueil des Travaux Chimiques des Pays-Bas, 1926, 45(6): 445-448.
[11] LIU Y, LUO D, WANG T. Hierarchical structures of bone and bioinspired bone tissue engineering[J]. Small, 2016, 12(34): 4611-4632.
[12] UPOV M. Substituted hydroxyapatites for biomedical applications: a review[J]. Ceramics International, 2015, 41(8): 9203-9231.
[13] SADAT-SHOJAI M, KHORASANI M T, DINPANAH-KHOSHDARGI E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures[J]. Acta Biomaterialia, 2013, 9(8): 7591-7621.
[14] ULLAH I, GLORIA A, ZHANG W C, et al. Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications[J]. ACS Biomaterials Science &Engineering, 2020, 6(1): 375-388.
[15] ZHOU T Y, ZHANG L, YAO Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications[J]. Ceramics International, 2020, 46(6): 7609-7614.
[16] AZEENA S, SUBHAPRADHA N, SELVAMURUGAN N, et al. Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering[J]. Materials Science and Engineering: C, 2017, 71: 1156-1165.
[17] ROS-Twidth=11,height=14,dpi=110RRAGA P, MAZwidth=11,height=14,dpi=110N P, REVILLA-NUIN B, et al. High temperature CaSiO3-Ca3(PO4)2 ceramic promotes osteogenic differentiation in adult human mesenchymal stem cells[J]. Materials Science and Engineering: C, 2020, 107: 110355.
[18] LI H Y, XUE K, KONG N, et al. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35(12): 3803-3818.
[19] CHOUDHARY R, CHATTERJEE A, VENKATRAMAN S K, et al. Antibacterial forsterite (Mg2SiO4) scaffold: a promising bioceramic for load bearing applications[J]. Bioactive Materials, 2018, 3(3): 218-224.
[20] BHASKAR N, SARKAR D, BASU B. Probing cytocompatibility, hemocompatibility, and quantitative inflammatory response in Mus musculus toward oxide bioceramic wear particulates and a comparison with CoCr[J]. ACS Biomaterials Science &Engineering, 2018, 4(9): 3194-3210.
[21] SHI Y L, WANG W Q. 3D inkjet printing of the zirconia ceramic implanted teeth[J]. Materials Letters, 2020, 261: 127131.
[22] ATE S, BARAN E, YAZICI B. The nanoporous anodic alumina oxide formed by two-step anodization[J]. Thin Solid Films, 2018, 648: 94-102.
[23] LUCAS T J, LAWSON N C, JANOWSKI G M, et al. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia[J]. Dental Materials, 2015, 31(12): 1487-1492.
[24] SANON C, CHEVALIER J, DOUILLARD T, et al. A new testing protocol for zirconia dental implants[J]. Dental Materials, 2015, 31(1): 15-25.
[25] 卢红霞, 高凯, 李明亮, 等. 以高炉渣为助烧剂制备ZTA/TiC复合陶瓷及其性能研究[J]. 郑州大学学报(工学版), 2020, 41(5): 8-14.LU H X, GAO K, LI M L, et al. Preparation of ZTA/TiC composite ceramics using blast furnace slag as sintering aid[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 8-14.
[26] GINEBRA M P, ESPANOL M, MAAZOUZ Y, et al. Bioceramics and bone healing[J]. EFORT Open Reviews, 2018, 3(5): 173-183.
[27] PEZZOTTI G. Silicon nitride: a bioceramic with a gift[J]. ACS Applied Materials &Interfaces, 2019, 11(30): 26619-26636.
[28] PEZZOTTI G, BOCK R M, ADACHI T, et al. Silicon nitride surface chemistry: a potent regulator of mesenchymal progenitor cell activity in bone formation[J]. Applied Materials Today, 2017, 9: 82-95.
[29] LANGE F F. The sophistication of ceramic science through silicon nitride studies[J]. Journal of the Ceramic Society of Japan, 2006, 114(11): 873-879.
[30] BAL B S, KHANDKAR A, LAKSHMINARAYANAN R, et al. Fabrication and testing of silicon nitride bearings in total hip arthroplasty: winner of the 2007 “HAP” Paul Award[J]. The Journal of Arthroplasty, 2009, 24(1): 110-116.
[31] BODI , V  K, KA IAROV M, DOMANICK  M, et al. Porous silicon nitride ceramics designed for bone substitute applications[J]. Ceramics International, 2013, 39(7): 8355-8362.
[32] KERSTEN R F M R, VAN GAALEN S M, ARTS M P, et al. The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol[J]. BMC Musculoskeletal Disorders, 2014, 15: 57.
[33] LI M, ZHANG L G, ZHANG C, et al. Effect of Y2O3 on the physical properties and biocompatibility of β-SiAlON ceramics[J]. Ceramics International, 2020, 46(15): 23427-23432.
[34] ZHANG L G, LIU X J, LI M, et al. Feasibility of SiAlON-Si3N4 composite ceramic as a potential bone repairing material[J]. Ceramics International, 2020, 46(2): 1760-1765.
[35] XIE H X, ZHANG L G, XU E X, et al. SiAlON-Al2O3 ceramics as potential biomaterials[J]. Ceramics International, 2019, 45(14): 16809-16813.
[36] ZHANG L G, ZHANG C, XU E X, et al. Effect of ZrO2 on the physicochemical properties and biological properties of β-SiAlON-ZrO2 composite ceramics[J]. Ceramics International, 2021, 47(1): 1244-1252.
[37] LUO M, HOU G Y, YANG J F, et al. Manufacture of fibrous β-Si3N4-reinforced biomorphic SiC matrix composites for bioceramic scaffold applications[J]. Materials Science and Engineering: C, 2009, 29(4): 1422-1427.
[38] GONZ LEZ P, SERRA J, LISTE S, et al. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications[J]. Biomaterials, 2003, 24(26): 4827-4832.
[39] FURKO M, BELLA E D, FINI M, et al. Corrosion and biocompatibility examination of multi-element modified calcium phosphate bioceramic layers[J]. Materials Science and Engineering: C, 2019, 95: 381-388.
[40] MELERO H, FARGAS G, GARCIA-GIRALT N, et al. Mechanical performance of bioceramic coatings obtained by high-velocity oxy-fuel spray for biomedical purposes[J]. Surface and Coatings Technology, 2014, 242: 92-99.
[41] CHEN Q Y, ZOU Y L, FU W, et al. Wear behavior of plasma sprayed hydroxyapatite bioceramic coating in simulated body fluid[J]. Ceramics International, 2019, 45(4): 4526-4534.
[42] PEZZOTTI G, MCENTIRE B J, BOCK R, et al. In situ spectroscopic screening of osteosarcoma living cells on stoichiometry-modulated silicon nitride bioceramic surfaces[J]. ACS Biomaterials Science &Engineering, 2016, 2(7): 1121-1134.
[43] STEFANIC M, KOSMA T. β-TCP coatings on zirconia bioceramics: the importance of heating temperature on the bond strength and the substrate/coating interface[J]. Journal of the European Ceramic Society, 2018, 38(15): 5264-5269.
[44] BAINO F, VITALE-BROVARONE C. Wollastonite-containing bioceramic coatings on alumina substrates: design considerations and mechanical modelling[J]. Ceramics International, 2015, 41(9): 11464-11470.
[45] TORRES A L, GASPAR V M, SERRA I R, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration[J]. Materials Science and Engineering: C, 2013, 33(7): 4460-4469.

更新日期/Last Update: 2023-07-01