[1]许贤泽,钟明,刘盼盼,等.光纤棒机床自动定位与对准装置[J].郑州大学学报(工学版),2020,41(06):1-6.[doi:10.13705/j.issn.1671-6833.2020.06.012]
 XU Xianze,WANG Xingyu,LIU Panpan,et al.The Automatic Location and Alignment Device for Optical Fiber Preform Machine Tools[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):1-6.[doi:10.13705/j.issn.1671-6833.2020.06.012]
点击复制

光纤棒机床自动定位与对准装置()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年06期
页码:
1-6
栏目:
出版日期:
2020-12-31

文章信息/Info

Title:
The Automatic Location and Alignment Device for Optical Fiber Preform Machine Tools
作者:
许贤泽钟明刘盼盼王星宇
武汉大学电子信息学院,湖北武汉430072, 武汉大学电子信息学院,湖北武汉430072, 武汉大学电子信息学院,湖北武汉430072, 武汉大学电子信息学院,湖北武汉430072

Author(s):
XU Xianze WANG Xingyu LIU Panpan ZHONG Ming
School of Electronic Information, Wuhan University,Wuhan 430072,China
关键词:
Keywords:
automatic alignmentdynamic threshold edge detection circle detection coaxial detection
DOI:
10.13705/j.issn.1671-6833.2020.06.012
文献标志码:
A
摘要:
针对现有光纤棒沉积机床同轴调试中存在对准耗时长和精度低的不足,设计并实现了一套高精度、高稳定性的光纤棒机床自动定位与对准装置。首先,通过张正友标定法消除镜头畸变和其他误差;接着,采用高斯滤波、动态阈值法和canny边缘检测对提取准确的图像边缘,消除噪声和背景对后续处理的影响;最后使用新型弧分类圆形检测算法实现图像中被测面中心的精确定位,确定图像比例尺并实时显示偏差大小,指导调节机床卡盘位置,实现机床两端中心对准。将本文算法与几种常用圆检测方法进行比较,其平均误差为1.0664pixel,平均定位时间为244ms,优于其他检测算法。实验结果表明,该装置对机床对准的准确度和效率均有显著提升,在相机分辨率为500w像素时,系统检测误差小于0.1mm。满足机床同轴检测要求,为机床同轴调试提供了快速有效的方法。
Abstract:
Aiming to solve the shortcomings of alignment time-consuming and low precision in the coaxial debugging of existing optical fiber rod deposition machine tools, a set of automatic positioning and alignment device with high accuracy and high stability was designed and implemented. Firstly, the radial distortion and tangential distortion were eliminated by the Zhang′s calibration method. Then, in order to eliminate the influence of noise and background on the subsequent processing, the images were pre-processed using Gaussian filtering, dynamic threshold and Canny edge detection to extract accurate image edges. Finally, a new arc classification circular detection algorithm was used to achieve the precise positioning of the center of the measured surface in the image. The scale and deviation of the image were determined according to the fitted circle; and the position of the machine tool chuck was adjusted to achieve the center alignment of both ends of the machine tool. When the camera resolution was 500×104, comparing the algorithm in this paper with several common circle detection methods, the average error and average positioning time of our algorithm were 0.047 mm and 244 ms, respectively, indicating that this algorithm was much better than other detection algorithm. The experimental results showed that the accuracy and efficiency of the device for machine tool alignment were significantly improved. When the camera resolution was 500×104, the system detection accuracy was less than 0.1 mm. This work could meet the requirements of machine tool coaxial inspection, and provide a fast and effective method for machine tool coaxial debugging.

参考文献/References:

[1] 马静,陈坚盾,冯高锋,等. 气相沉积与非气相沉积制造光纤预制棒[J]. 现代传输, 2015 (6): 36-38.

[2] 马静,陈坚盾,董瑞洪,等. 浅析光纤预制棒(MCVD法)的制备工艺研究[J]. 现代传输, 2016 (2): 27-30.
[3] 王晶,高峰,李婉越,等. 瞳孔中心点自动定位与对准装置[J]. 光学精密工程, 2019, 27(6): 1370-1377.
[4] 刘自然,程晓辉,颜丙生,等. 基于机器视觉的机床对刀自动测量系统[J]. 组合机床与自动化加工技术, 2017 (9): 99-102.
[5] 解则晓,王晓敏.平面标定靶标标记点的圆心提取[J].光学精密工程,2019,27(2):440-449.
[6] 朱伟东,曹良洪,梅标,等. 利用圆心不对称投影精确标定工业相机[J]. 光学精密工程, 2014, 22(8): 2267-2273.
[7] ZHANG Z.A flexible new technique for camera calibra-tion[J].IEEE transactions on pattern analysis and machine intelligence,2000,22(11):1330-1334.
[8] 夏星宇,高浩,王创业.均衡策略粒子群算法在图像分割中的应用[J].郑州大学学报(工学版),2018,39(1):59-66.
[9] 王宇,王宝山,王田,等. 面向遥感图像水域分割的图像熵主动轮廓模型[J]. 光学精密工程, 2018, 26(3): 698-707.
[10] 王喆,赵世凤,田沄,等. 基于自适应聚类中心的脑血管分割方法[J]. 郑州大学学报(工学版), 2019, 40(1):18-23.
[11] XU L,OJA E,KULTANEN P.A new curve detection method:randomized hough transform (RHT)[J].Pattern recognition letters,1990,11(5):331-338.
[12] CHEN T C,CHUNG K L.An efficient randomized algorithm for detecting circles[J].Computer vision and image understanding,2001,83(2):172-191.
[13] CHEN S L,XIA R B,ZHAO J B,et al.A hybrid method for ellipse detection in industrial images[J].Pattern recognition,2017,68:82-98.
[14] LU C S,XIA S Y,SHAO M,et al.Arc-support line segments revisited:an efficient high-quality ellipse detection[J].IEEE transactions on image processing,2020,29:768-781.

更新日期/Last Update: 2021-02-10